V-UO-000005-2018,00

F113266 andeavor

Andeavor 1801 California Street, Suite 1200 Lenver, CO 80202

andeavor com

April 10, 2018

RECEIVED APR 1 1 2018

FedEx #771929288168

Part 71 Permit Contact Air Program, 8P-AR U.S. EPA, Region 8 1595 Wynkoop Street Denver, CO 80202

RE: Wonsits Valley Compressor Station (Uintah County, Utah)
Revised Part 71 Federal Operating Permit Renewal Application

Operating Permit No. V-UO-000005-2000.00

Dear Sir or Madam:

Andeavor, operator of the Wonsits Valley Compressor Station, is submitting the enclosed Title V operating permit application on behalf of Andeavor Field Services LLC. The facility currently operates under Operating Permit No. V-UO-000005-2000.00 which expires on October 10, 2018. According to permit Condition VII.Q.2, the permit renewal application must be submitted at least 6 months prior to the date of expiration of the permit; therefore, the enclosed application is timely submitted.

The application package to renew this permit, pursuant to 40 CFR Part 71, contains a facility narrative (including an Introduction, Process Description and Emission Summary) and the following appendices:

- Appendix A EPA Part 71 Forms
- Appendix B Emission Calculations
- Appendix C Supporting Documentation for Emission Calculations

In addition, Andeavor is requesting that EPA allow alternative test methods for engine emissions testing. This would include alternative testing methods with the FTIR analyzer. The alternative methods for the FTIR analyzer are EPA 40 CFR 63(A), Method 320, and ASTM D 6348-03. These would use Method 320 as an optional alternative method for EPA Methods 4 (moisture content), 7E (NO_x), and 10 (CO) that are currently required by permit Condition V.D.2.(c). FTIR records moisture, NO_x, and CO simultaneously under a single method.

If you have any questions regarding this submittal, please contact me at (303) 454-6685 or Thomas.H.Gibbons@andeavor.com.

Sincerely,

Thomas Gibbons

Environmental Specialist

Thoma A. Sileton

Encl: Application Package

BINS I ARY DEVELOPE

The same state of the same sta

Federal Operating Permit Application

Federal Operating Permit Renewal Application for Wonsits Valley Compressor Station

Uintah County, Utah

Prepared By:

Andeavor

1801 California Street, Suite 1200 Denver, CO 80202

Submitted To:

U.S. Environmental Protection Agency

Air and Radiation Program, 8P-AR 1595 Wynkoop Street Denver, CO 80202

April 2018

Contents

Secti	ion		
1.0	Introduction	t 	1
2.0	Summary of	Operations	
		Facility Location	
	2.1.2	Process Description	2
	2.1.3	Emission Controls	
3.0	Emissions St	ummary	4
4.0	Regulatory I	Review	6

Figures

Figure 2-1 Facility Location Map

Figure 2-2 Facility Plot Plan

Figure 2-3 Facility Process Flow

Tables

Table 3-1 Facility Emissions Summary

Table 3-2 Facility Equipment Emissions Inventory

Appendices

Appendix A EPA Part 71 Forms

Appendix B Emission Calculations

Appendix C Supporting Documentation for Emissions Calculations

1.0 Introduction

Andeavor, operator of the Wonsits Valley Compressor Station, is submitting this permit application package to the U.S. Environmental Protection Agency, Region 8, on behalf of Andeavor Field Services, LLC (formerly known as QEP Field Services, LLC) for the purpose of renewing the Part 71 Operating Permit for the Wonsits Valley Compressor Station.

The Wonsits Valley Compressor Station is currently operating under Part 71 operating permit V-UO-00005-2000.00, issued to QEP Field Services Company (QEPFS) by EPA Region 8 on September 10, 2013. This permit was issued with an effective date of October 10, 2013, and an expiration date of October 10, 2018.

This application incorporates the following modifications that were submitted to EPA after the original September 10, 2013, issuance date:

 Minor Modification (April 21, 2014): reconstruction of compressor engine unit C207, now subject to NSPS Subpart JJJJ.

Other physical changes to the existing facility include:

- Compressed air, not natural gas, is used to drive pneumatic devices and pumps. Thus, emission unit GP from the original Part 71 permit is not applicable.
- None of the lean-burn compressor engines currently has an oxygen sensor; therefore, the
 requirement referenced in Condition V.D.2.b to replace oxygen sensors within 2000 hours of
 engine run time is not applicable.
- Condensate is not currently loaded out from the facility, so insignificant emission unit LO is not currently applicable.

The following sections are included in this application:

- Section 2 of this application includes a process description of the facility.
- Section 3 provides a summary of emissions-related information.
- Section 4 contains a regulatory review of federal air quality regulations.
- Appendix A contains the required EPA Part 71 application forms pertaining to new emissions units that are part of this permit application revision.
- Appendix B contains the detailed emission calculations.
- Appendix C contains supporting data for the emission calculations, including engine specification sheets and gas/liquids analyses.

2.0 Summary of Operation

2.1.1 Facility Location

The Wonsits Valley Compressor Station is located on the Uintah and Ouray Indian Reservation in Uintah County, Utah, 22 miles south of Vernal, Utah, in SE¹/₄NE¹/₄ of Section 12, Township 8 South, Range 21 East. A site location map is provided in Figure 2-1.

The site is in an area classified as attainment for all criteria pollutants.

2.1.2 Process Description

A comingled gas/liquid stream (containing natural gas, condensate, and produced water) flows from the field via two 16-inch pipelines to a slug catcher at the station where the liquids and gas are separated. The liquids gravity feed to a 3-phase separator that separates produced water, condensate, and gas. The separated produced water is fed into a pipeline leaving the site. Condensate is temporarily stored in storage tank (unit T-1, controlled with combustor unit C-1) and is then gravity fed off site to the Battery 4 facility. The gas continues to one of the inlet scrubbers at 100 psig at near ambient temperature. The gas continues through a 24-inch line where it enters the compressors (units C202, C203, C204, C206, or C207). The gas is compressed and discharged at up to 1200 psig and 120°F. After compression, the gas can flow through a discharge cooler during hot weather to cool it to 120°F or bypass the cooler in colder weather. From the cooler, the gas flows through the dehydrator (unit D-1) inlet coalescer filter to take out the lube oil from the gas. The gas then enters the dehydrator absorber (contactor) and bubbles up through lean triethylene glycol (TEG) to take the water out of the gas stream. During this process, water vapor is removed from the gas to a concentration determined by a sales contract. The dry gas then enters the downstream coalescer to catch any TEG carryover. The pipeline quality natural gas exits the contactor, is metered, and is routed off location through a 12-inch pipeline to the Ironhorse Complex Gas Plant. Fuel gas for the station is pulled from the discharge after the dehydrator where it is filtered and separated. The dry fuel gas is then pushed through individual coalescer filters at each engine.

The rich TEG exits the contactor and is regenerated using heat in a vessel known as a reboiler (R-1). A natural gas-fired heater heats the TEG to a set temperature that boils the impurities out of the TEG. The vapors from the reboiler are routed to the BTEX condenser to remove liquids that drain into the distillate tank. Overhead vapors from the BTEX condenser and flash gas from the flash tank are sent to an emission control device (open flare, unit FL-1, with backup combustor, unit C-2) with a control efficiency of at least 95%. The regenerated lean TEG is circulated back through to the contactor.

There are fugitive emissions associated with the potential seeping of gas from connections, seals, flanges and valves. Instrument air is utilized on site for energizing pneumatic equipment.

A facility plot plan is provided as Figure 2-2 and process flow diagram as Figure 2-3.

2.1.3 Emission Controls

Emissions controls for the facility include:

- oxidation catalysts for the five natural gas-fired, lean-burn compressor engines (units C202, C203, C204, C206, and C207);
- an open flare (unit FL-1) to control VOC and HAP emissions from the dehydration unit (unit D-1), with an enclosed combustor (unit C-1) as backup, with destruction efficiencies of at least 95% (flame presence of pilots is monitored continually); and
- an enclosed combustor (unit C-2) to control VOC and HAP emissions from the condensate storage tank (unit T-1) with a destruction efficiency of at least 95% (flame presence of pilot is monitored continually).

3.0 Emissions Summary

The Wonsits Valley Compressor Station emissions estimates include all the sources listed below. A summary of total emissions (allowable with federally enforceable controls) listed by individual pollutant is found in Table 3-1. A summary of emissions (potential to emit with federally enforceable controls) listed by source is found in Table 3-2.

Detailed emission calculations are provided in Appendix B for the following:

- Compressor Engines (five natural gas-fired units)
- TEG Dehydrator (100 MMscfd, controlled with flare and backup combustor)
- Glycol Reboiler (1 MMBtu/hr)
- Condensate Storage Tank (one 500-bbl, controlled with combustor)
- Miscellaneous Chemical Storage Tanks (eight, insignificant)
- Truck Loadout, Condensate (insignificant)
- Equipment Leaks (Fugitives)
- Pigging (insignificant)
- Engine Startups (insignificant)
- Compressor Blowdowns
- Emergency Shutdowns (insignificant)
- Dehydrator Flare
- Tank Vapor Combustor
- Dehydrator Backup Combustor

Table 3-1. Facility Emissions Summary (Federally Enforceable)

Pollutant	Allowable Emissions (tpy)
Nitrogen Oxides (NO _x)	182.7
Carbon Monoxide (CO)	172.9
Volatile Organic Compounds (VOC)	121.8
Sulfur Dioxide (SO ₂)	0.5
Particulate Matter, less than 10 µm (PM ₁₀)	5.8
Formaldehyde ¹	9.8
Lead (Pb)	0
Fluorides (gaseous and particulate)	0
Sulfuric Acid Mist (H ₂ SO ₄)	0
Hydrogen Sulfide (H ₂ S)	0
Total Reduced Sulfur (TRS)	0
Reduced Sulfur Compounds	0
Total Hazardous Air Pollutants (HAPs)	22.5

¹Single largest HAP

Table 3-2. Facility Equipment Emissions Inventory

Emission Unit ID	Emission Source Description	NO _x (tpy)	CO (tpy)	VOC (tpy)	SO ₂ (tpy)	PM/PM ₁₀ (tpy)	HCHO 1 (tpy)	Total HAP (tpy)
C202	3406-hp Caterpillar G3612LE 4SLB Compressor Engine, equipped with SCO	32.9	32.9	17.9	0.1	1.1	1.6	2.7
C203	3406-hp Caterpillar G3612LE 4SLB Compressor Engine, equipped with SCO	32.9	32.9	17.9	0.1	1.1	1.6	2.7
C204	3406-hp Caterpillar G3612LE 4SLB Compressor Engine, equipped with SCO	32.9	32.9	17.9	0.1	1 .1	1.6	2.7
C206	3100-hp Waukesha 12V-AT27GL 4SLB Compressor Engine, equipped with SCO	38.9	29.9	11.0	0.1	1.0	2.7	3.6
C207	4554-hp Caterpillar G3616LE 4SLB Compressor Engine, equipped with SCO	44.0	44.0	23.4	0.1	1.5	2.2	3.6
D-1	100-MMscfd TEG Dehydrator, equipped with flare (FL-1), backup combustor (C-2)			15.3				6.1
T-1	500-bbl Condensate Tank, equipped with combustor (C-1)	1.		3.6		1		0.2
EL	Equipment Leaks			4.8				0.4
СВ	Compressor Blowdowns	12	1 5 5	10.0				0.5
FL-1	Dehydrator Flare	0.7	0.17	1 1				e E
C-1	Tank Vapor Enclosed Combustor	0.4	0.11	5-4	1 7			KL!
Total		182.7	172.9	121.8	0.5	5.8	9.8	22.5

¹ Formaldehyde (HCHO) emissions represent the highest individual HAP.

4.0 Regulatory Review

This section provides a regulatory review of the federal air quality requirements applicable to Wonsits Valley Compressor Station. The purpose of this section is to provide appropriate explanation and rationale regarding the applicability or non-applicability of these regulations to the facility.

40 CFR Part 71 - Operating Permit Requirements (Title V)

The federal operating permit program (Title V of the Federal Clean Air Act) is implemented by regulations codified at 40 CFR Part 71. The facility is a major stationary source with respect to the Part 71 Operating Permit Program. The potential to emit (PTE), considering all federally enforceable controls, of criteria air pollutants exceeds the major source threshold of 100 tpy. In addition, per §63.764(f), a major HAP source subject to 40 CFR Part 63, Subpart HH, is required to apply for a 40 CFR Part 71 operating permit.

It should be noted per Consent Decree 2:08-CV-00167-TS-PMW, 17(b), the existing dehydration unit and engines are subject to the "major source" requirements of 40 CFR Part 63, Subparts HH and ZZZZ; however, the site is a currently synthetic minor source with regard to HAP emissions.

40 CFR Part 52 - Prevention of Significant Deterioration (PSD)

This facility is not a source listed in one of the 28 PSD source categories; therefore PSD requirements are triggered if the PTE exceeds 250 tpy of any criteria pollutant or 100,000 tpy of carbon dioxide equivalent (CO₂e). Based on these thresholds, with the federally enforceable controls, this facility is a synthetic minor stationary source with respect to the Prevention of Significant Deterioration (PSD) Program.

New Source Performance Standards (NSPS)

40 CFR Part 60 Subpart A - General Provisions: New Source Performance Standards (NSPS) Subpart A, General Provisions, applies to any stationary source that contains an affected facility to which a NSPS is applicable. As discussed below, this facility is subject to several NSPS; therefore, the requirements of Subpart A apply.

40 CFR Part 60 Subpart Dc - Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units: NSPS Subpart Dc applies to steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989, and that have a maximum design heat input capacity less than 29 megawatts (MW) (100 MMBtu/hr) but greater than or equal to 2.9 MW (10 MMBtu/hr). 40 CFR 60.41c states:

"Steam generating unit means a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart." The facility does not contain any heaters that have a maximum design heat input capacity of at least 10 MMBtu/hr; therefore, Subpart Dc does not apply.

40 CFR Part 60 Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984: Per 40 CFR 60.110b(d)(2) and (d)(4), this subpart does not apply to vessels with a design capacity less than or equal to 1,589.874 cubic meters (420,000 gal, 10,000 bbl) used for petroleum or condensate stored, processed, or treated prior to custody transfer or pressure vessels designed to operate in excess of 204.9 kilopascal (kPa) and without emissions to the atmosphere. The potentially subject atmospheric tanks at the facility have capacities of less than 1,589.874 m³; therefore, the storage tanks are exempt from this subpart.

40 CFR 60 Subpart KKK - Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants: This subpart applies to natural gas processing plants that commenced construction, reconstruction, or modification after January 20, 1984, and on or before August 23, 2011, and include the following facilities located at onshore natural gas processing plants: a compressor station, dehydration unit, underground storage tank, field gas gathering system, or liquefied natural gas unit. A natural gas processing plant is defined in Subpart KKK as "any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both." The facility is a compressor station and not a natural gas processing plant; therefore, the facility is not subject to this subpart.

40 CFR Part 60 Subpart LLL - Standards of Performance for Onshore Natural Gas Processing: SO₂ Emissions: NSPS Subpart LLL applies to the following facilities that process natural gas: each sweetening unit, and each sweetening unit followed by a sulfur recovery unit. The facility does not contain any sweetening units; therefore, Subpart LLL does not apply. The facility is a compressor station and not a natural gas processing plant; therefore, the facility is not subject to this subpart.

40 CFR 60 Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines: This subpart applies to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE), which commenced construction on or after June 12, 2006, and were manufactured on or after July 1, 2008 (100-500 hp), on or after January 1, 2008 (lean burn, 500-1350 hp), or on or after July 1, 2007 (rich burn, >500 hp and lean burn >1350 hp). Based on the dates of reconstruction (in 2007 and 2014), all compressor engines are subject to this subpart.

40 CFR 60 Subpart OOOO - Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced after August 23, 2011, and on or before September 18, 2015: This subpart applies to "affected facilities" including but not limited to pneumatic controllers, storage vessels, reciprocating compressors, centrifugal compressors with wet seals, and components at onshore natural gas processing plants, which commenced construction, were modified, or were reconstructed after August 23, 2011, and on

or before September 18, 2015. All equipment at the facility was installed before August 23, 2011; therefore, the facility is not subject to this subpart.

40 CFR 60 Subpart OOOOa - Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015: This subpart applies to "affected facilities" including but not limited to pneumatic controllers, pneumatic pumps, storage vessels, reciprocating compressors, centrifugal compressors with wet seals, and components at onshore natural gas processing plants and compressor stations, which commenced construction, were modified, or were reconstructed after September 18, 2015. All equipment at the facility was installed before September 18, 2015; therefore, the facility is not subject to this subpart.

National Emission Standards for Hazardous Air Pollutants (NESHAPS)

40 CFR Part 63 Subpart A – General Provisions: National Emission Standards for Hazardous Air Pollutants (NESHAP) Subpart A, General Provisions, apply to any stationary source that contains an affected facility to which a NESHAP is applicable. As discussed below, this facility is subject to a NESHAP; therefore, the requirements of Subpart A apply.

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities: This subpart applies to glycol dehydration units, storage vessels with the potential for flashing and throughput greater than 500 bbl/day, and fugitive equipment at processing plants that are major sources of hazardous air pollutants (HAP) emissions, and triethylene glycol (TEG) dehydration units at area sources of HAP emissions. The facility is not a natural gas processing plant. The facility does not have any storage vessels with a throughput greater than 500 bbl/day.

The TEG dehydrator at this facility is classified as a large glycol dehydration unit, defined as a unit with actual annual average natural gas flow rate of at least 3 MMscfd and actual annual average benzene emissions equal to or greater than 0.90 Mg/yr, including units complying with the 0.9 Mg/yr control option under §63.765(b)(1)(ii). As a major source of HAP emissions, per §63.764(c)(1)(i), the dehydrator must comply with the control requirements for glycol dehydration unit process vents specified in §63.765.

Federally enforceable control requirements for glycol dehydration units are specified in §63.765. The dehydration unit at the Wonsits Valley Compressor Station is complying with the control requirements because the process vent is connected to a control device through closed-vent systems as required by §63.765(b)(1)(i). The offgas from the BTEX condenser is routed to the flare. Flash gas is also sent to the flare.

Per §63.765(b)(1)(i), the control device must be designed and operated in accordance with the requirements of §63.771(d) which, for the dehydrator at this facility equipped with a flare (achieving 95% HAP reduction), stipulates that the control device be designed and operated in accordance with the requirements of §63.11(b).

Monitoring requirements are specified in §63.773(c) and (d). The closed-vent system complies with the monitoring and inspection requirements of §63.773(c). The flare complies with the requirement to continuously monitor and record the presence of the pilot flame, per §63.773(d)(3)(i)(C).

The dehydration units must also demonstrate on-going compliance with the following:

- Recordkeeping requirements in §63.774
- Reporting requirements in §63.775

40 CFR 63 Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines: This subpart applies to stationary reciprocating internal combustion engines (RICE) at major and area sources of HAPs. The five compressor engines are 4-stroke, lean-burn units, each greater than 500 horsepower. Per Consent Decree Case No. 2:08-CV-00167-TS-PM, the facility is an existing major source under Subpart ZZZZ as of July 3, 2012. As such, the engines are subject to the existing RICE provisions of Subpart ZZZZ and are operated in compliance with all applicable requirements of this subpart.

40 CFR **63** Subpart DDDDD - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters: This subpart applies to industrial, commercial, or institutional boilers or process heaters located at, or part of, a major source of HAP. The facility is a synthetic minor HAP source because there are federally enforceable emission controls that limit HAP emissions to less than major source levels. Consequently, the facility is not a major source of HAP and Subpart DDDDD does not apply.

40 CFR Part 64 - Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) requirements apply to a pollutant-specific emissions unit (PSEU) at a major source that is required to obtain a part 70 or 71 permit if the unit satisfies all of the following criteria:

- The unit is subject to an emission limitation or standard for the applicable regulated air pollutant (or a surrogate thereof);
- The unit uses a control device to achieve compliance with any such emission limitation or standard; and
- The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source.

Compressor engine C207 has potential pre-control device emission total for CO that is greater than 100 tpy and formaldehyde that is greater than 10 tpy, and uses a control device to achieve compliance; however, since the engine is subject to the CO limitation under NSPS Subpart JJJJ and the formaldehyde surrogate CO limitation under MACT Subpart ZZZZ, it is exempt from CAM per §64.2(b)(1)(i).

The dehydration unit has potential pre-control device VOC emissions that are greater than 100 tpy, and HAP emissions that are greater than 10 tpy each for benzene, toluene, and xylenes and 25 tpy for aggregated HAP emissions. A control device is used to achieve compliance with the HAP limitations of MACT Subpart HH and the Part 71 permit limits. Since the

dehydration unit is subject to the HAP limitations of MACT Subpart HH, it is exempt from CAM per §64.2(b)(1)(i). It is also exempt from CAM per §64.2(b)(1)(vi) because the Part 71 permit specifies a continuous compliance determination method for VOC, as defined in §64.1.

40 CFR Part 68 - Chemical Accident Prevention Provisions

The Chemical Accident Prevention rules under 40 CFR Part 68 require covered facilities to conduct a hazard assessment, develop a prevention program and an emergency response program, and submit a Risk Management Plan (RMP). Facilities must comply if they have "covered" processes involving regulated, highly hazardous substances in excess of specified threshold levels.

The facility does not have any regulated or highly hazardous substances in excess of specified threshold levels. As such, this facility is not subject to this subpart.

Permit Shield

Andeavor is requesting a permit shield for the following regulations that are not currently applicable to Wonsits Valley Compressor Station per 40 CFR 71.6(f).

- 40 CFR Part 52, Prevention of Significant Deterioration (PSD)
- 40 CFR Part 60 Subpart Dc
- 40 CFR Part 60 Subpart Kb
- 40 CFR Part 60 Subpart KKK
- 40 CFR Part 60 Subpart LLL
- 40 CFR Part 60 Subpart OOOO
- 40 CFR Part 60 Subpart OOOOa
- 40 CFR Part 63 Subpart DDDDD
- 40 CFR Part 64, Compliance Assurance Monitoring
- 40 CFR Part 68, Chemical Accident Prevention

FIGURE 2-1 Wonsits Valley Compressor Station Site Map

002/001-4 CO JUST COD JOS COS JUST COS J 50.03 -Mary Name (Case) **3**0 Selfactions that H 27 6 FIGURE 2-2 Wonsits Valley Compressor Plot Plan FIGURE 2-2 Facility Plot Plan (3) 1

FIGURE 2-3 Simplified Wonsits Valley Facility Simplified Process Flow

Appendices

agoithneum.

APPENDIX A EPA Part 71 Forms

- 0 CTAC 5900-02
- 1 GIS 5900-79
- 2 EUD1 5900-80 C202
- 3_EUD1_5900-80_C203
- 4 EUD1 5900-80 C204
- 5 EUD1 5900-80 C206
- 6 EUD1 5900-80 C207
- 7 EUD2 5900-81 D-1
- 8_EUD2_5900-81_T-1
- 9_EUD2_5900-81_EL
- 10 EUD2 5900-81 CB
- 11 EUD2 5900-81 FL-1
- 12 EUD2 5900-81 C-1
- 13 EMISS 5900-84 C202
- 14 EMISS 5900-84 C203
- 15_EMISS_5900-84_C204
- 16_EMISS_5900-84_C206
- 17_EMISS_5900-84_C207
- 18_EMISS_5900-84_D-1
- 19_EMISS_5900-84_T-1
- 20 EMISS 5900-84 EL
- 21_EMISS_5900-84_CB
- 22_EMISS_5900-84_FL-1
- 23 EMISS 5900-84 C-1
- 24 PTE 5900-85
- 25_IE_5900-83
- 26_I-COMP_5900-86

A WINDS

Federal Operating Permit Program (40 CFR Part 71) CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official		
Name: (Last) <u>Gebhardt</u>	(First)Michael	(MI) <u>P</u>
Title _Vice President, Mid-Continer	nt Gathering and Processing	
Street or P.O. Box <u>1801 California</u>	St., Suite 1200	
City Denver	State _CO ZIP	80202
Telephone (<u>303</u>) <u>454</u> - <u>6625</u> E	xt Facsimile ()
B. Certification of Truth, Accuracy responsible official)	cy and Completeness (to be	signed by the
and the second s	on information and belief form	ned after reasonable
responsible official) I certify under penalty of law, based inquiry, the statements and information	on information and belief formation contained in these docum	ned after reasonable

31 6 4

Federal Operating Permit Program (40 CFR Part 71) GENERAL INFORMATION AND SUMMARY (GIS)

Facility name	Wonsits Valley Compr	ressor Station		
Mailing address:	Street or P.O. Box1	801 California S	St., Suite 1200	Table deposit may
City Denver		State _	CO ZIP_	80202 -
Contact person:	Thomas Gibbons	Title _E	nvironmental S	specialist
Telephone (_303) 454 - 6685	Ext	7744	
Facsimile (_		
Owner	700.2			Total got 1 ss
Pacility Location Owner NameAndea	vor Field Services LLC			alifornia St., Suite 1200
Owner NameAndea		Street/P.0	D. Box <u>1801 C</u>	
Owner NameAndea CityDenv	ver	Street/P.0	D. Box <u>1801 C</u>	alifornia St., Suite 1200
Owner NameAndea CityDenv	ver	Street/P.0	D. Box <u>1801 C</u>	alifornia St., Suite 1200 80202 -
Owner NameAndea CityDenv Telephone (_303	ver 	Street/P.0 Stat _ Ext	D. Box <u>1801 C</u>	80202
Owner NameAndea CityDent Telephone (_303 Operator NameSame	ver	Street/P.0 Stat	D. Box <u>1801 C</u> ee_CO_ ZIP_	80202 -

Mark only one permit appl marked.	ication type and answer the	e supplementary question appropriate for the type	oe
Initial Permit X F	Renewal Significant	Mod Minor Permit Mod(MPM)	
Group Processing, MI	PM Administra	tive Amendment	
For initial permits, when di	id operations commence?		
For permit renewal, what i	s the expiration date of cur	rent permit?10 / 10 / 2018	
Applicable Requirement S	Summany		
	ele requirements that apply:		
SIP	FIP/TIP	PSDNon-attainmen	t NSF
X Minor source NSR	X Section 111	Phase I acid rainPhase II acid r	ain
		X_NESHAPX_Sec. 112(d) N	
		AP Sec 112(j) MACT RMP [Sec.11	
		or visibility but for temporary sources (This is r	
	e Deepwater Port Act?		u. 0,
	an been registered?YE		
Friase II acid rain applicati	on submitted?YES	NO If YES, Permitting Authority	_
Source-Wide PTE Restrict	tions and Generic Applica	ible Requirements	
te and describe any emission	ns-limiting requirements and	l/or facility-wide "generic" applicable requiremen	nts.
0 CFR Part 60 Subpart A	 General Provisions 		
	Standards of Performance	e for Stationary Spark Ignition Internal Comb	ustio
ingines			
0 CFR Part 63 Subpart A	 General Provisions 		
0 CFR 63 Subpart HH -	National Emission Stand	lards for Hazardous Air Pollutants From O	il and
Natural Gas Production Fa	cilities		

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Oil & Gas Extraction	Crude Petroleum and Natural Gas	1311
	and the wave rate	

3

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
C202	3406-hp Caterpillar G3612LE Compressor Engine, 4-Stroke Lean-Burn RICE; Serial No. 1YG00023; natural gas-fired; equipped with SCO; Installed: 9/2007, Reconstructed: 9/2007
C203	3406-hp Caterpillar G3612LE Compressor Engine, 4-Stroke Lean-Burn RICE; Serial No. 1YG00022; natural gas-fired; equipped with SCO; Installed: 9/2007, Reconstructed: 9/2007
C204	3406-hp Caterpillar G3612LE Compressor Engine, 4-Stroke Lean-Burn RICE; Serial No. 1YG00034; natural gas-fired; equipped with SCO; Installed: 9/2007, Reconstructed: 9/2007
C206	3100-hp Waukesha 12V-AT27GL Compressor Engine, 4-Stroke Lean-Burn RICE; Serial No. C-13271/2; natural gas-fired; equipped with SCO; Installed: 3/2001, Reconstructed: 6/2007
C207	4554-hp Caterpillar G3616LE Compressor Engine, 4-Stroke Lean-Burn RICE; Serial No. BLB00215; natural gas-fired; equipped with SCO; Installed: 6/2008, Reconstructed: 1/2014
D-1	100-MMscfd TEG Dehydrator; equipped with flare, backup combustor
T-1	500-bbl Condensate Tank, 21900 bbl/yr; vapors controlled by enclosed combustor (C-1)
EL	Equipment Leaks
СВ	Compressor Blowdowns
FL-1	Dehydrator Flare (primary control for D-1)
C-1	Enclosed Combustor (control for condensate tank, T-1)
C-2	Enclosed Combustor (backup control for dehydrator, D-1)

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each regulated air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants, stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

tons/yr		_ tons/yr	voc_	133.2	tons/yr	SO2 _	0.4	tons/yr	
PM-10 _	5.9	_ tons/yr	co _	173.1	tons/yr	Lead _	0	tons/yr	
Total HA	P23.0		tons/yr						
Single H	AP with gr	eatest amo	ount	formalde	hyde	PTE	.8 tons	s/yr	
Total of r	egulated p	oollutants (1	or fee ca	lculation),	Sec. F, lin	e 5 of form	FEE _	N/A tons/yr	
				ALC: N					
istina Fe	derally-E	nforceable	Permite						
asting re	derany-E	IIIOICEADIE	rennus						
Permit nu	umber(s) \	/-UO-0000	05-2000.	00 Perm	nit type Pa	rt 71	Permitti	ng authorityEP	Α
a comment									
Permit nu	umber(s) _	A MIN		Permit	type		Permitti	ing authority	
97 33.2	er vang spraw			200	type		Permitti	ing authority	
97 33.2	er vang spraw	vered by (200	type		_ Permitti	ing authority	
mission (Jnit(s) Co	vered by (Seneral F	Permits				ing authority	
mission l	Jnit(s) Co	vered by (General F	Permits	Not Applic	able		ing authority	
mission l	Jnit(s) Co	vered by (General F	Permits	Not Applic	able		ing authority	_
Emission Check or	Jnit(s) Co unit(s) su	vered by Consideration	General F neral per n made	Permits mit	Not Applic	cable granted			
Emission Check or	Jnit(s) Co unit(s) su	vered by Consideration	General F neral per n made	Permits mit	Not Applic	cable granted		ing authority	
Emission to Check or General	Jnit(s) Co unit(s) su ne: permit ide	vered by Complete	General F neral peri n made	Permits mit	Not Applic	cable granted			_
Emission (Emission Check or General)	Jnit(s) Co unit(s) su ne: permit ide	vered by Consideration	General F neral peri n made	Permits mit	Not Applic	cable granted			
Emission Check or General	Jnit(s) Co unit(s) su ne: permit iden	vered by Combined to the big of t	General F neral per n made	Permits mit	Not Applic	granted Exp	ration Dat		-

INSTRUCTIONS FOLLOW

A. General Information	week minners.
Emissions unit ID Description_3406-hp, 4S SIC Code (4-digit) SCC Code_20200	
B. Emissions Unit Description	mary files of
Primary useNatural Gas Compressor Engine ManufacturerCaterpillar Serial Number1YG00023 Boiler Type: Industrial boiler Process burner Other (describe)	Model NoG3612LE Installation Date9 /_ / 2007 Electric utility boiler
Boiler horsepower rating Boiler steam	m flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):	
Hand firedSpreader stokerUnderfeed	stokerOverfeed stoker
Traveling grateShaking gratePulverized,	wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design H	leat Input25.7MM BTU/hr

Fuel Type Natural Gas Juel Usage Rates Fuel Type Natural Gas Sociated Air Pollution Control Equi	Max. Sulfur Content (%) Negligible Annual Actua Usage N/A	Con (% Negli	Hourly	(cf	BTU Value f, gal., or lb.) Btu/scf (HHV) m Usage Annual 202 MMscf
uel Usage Rates Fuel Type Natural Gas	Annual Actua Usage		Hourly	Maximu	m Usage Annual
Fuel Type Natural Gas	Usage	al	Hourly		Annual
Natural Gas	Usage	al	Hourly		Annual
TACK TO A STATE OF THE STATE OF	N/A		23 Ms	cf	202 MMscf
	w in a				
r pollutant(s) Controlled CO, HCHO, Vodel No. N/A Serial No. N/A Serial No. N/A Stallation date 9/ /2007 Control efficiency estimation method	typeSelecti VOC, HAPs_M A siency (%) _60%	fanufact	turer_N/A	A OC), 81%	ь НСНО, 50% Н <i>А</i>
nbient Impact Assessment formation must be completed by temporal ble requirement for this emissions unit				impact a	assessment is ar
ack height (ft) Ir	nside stack diar	meter (f	ft)	·	
ack temp (°F)	Design stack flo	ow rate	(ACFM)		-

Emissions unit ID <u>C203</u> Description <u>3406</u>	-hp, 4SLB compressor engine
SIC Code (4-digit) 1311 SCC Code	20200254
B. Emissions Unit Description	Full Type
Primary use	Model No. G3612LE Installation Date 9 / / 2007 rner Electric utility boiler
Other (describe) Boiler horsepower rating Type of Fuel-Burning Equipment (coal burning only):	er steam flow (lb/hr)
Hand firedSpreader stokerUnd	
Traveling grateShaking gratePulv	erized, wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. D	esign Heat Innut 25.7 MM RTI I/hr

Describe each fuel you expected t	o use during the term	of the permit.		
Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)		BTU Value f, gal., or lb.)
Natural Gas	Negligible	Negligible	1113	Btu/scf (HHV)
). Fuel Usage Rates				
Fuel Type	Annual Actua Usage	al Hourly	Maximui	m Usage Annual
Natural Gas	N/A	23 M	scf	202 MMscf
The state of the s			-13-14	
roller yring nation	tweeter in		A shall	
Associated Air Ballutian Control				
. Associated Air Pollution Control	Equipment			817
Emissions unit IDC203 De Air pollutant(s) Controlled_CO, HC Model NoN/A Serial No Installation date_10/_/2007 Control Efficiency estimation method	cHO, VOC, HAPs M D. N/A ol efficiency (%) 60%	anufacturer_N/.	A DC), 81%	HCHO, 50% HA
Emissions unit IDC203 De Air pollutant(s) Controlled_CO, HC Model NoN/A Serial No Installation date_10/_/2007 Control	cHO, VOC, HAPs M D. N/A ol efficiency (%) 60%	anufacturer_N/.	A DC), 81%	HCHO, 50% HA
Air pollutant(s) Controlled_CO, HO Model NoN/A Serial No Installation date_10/_/2007 Control	evice type Selection SHO, VOC, HAPS M N/A I efficiency (%) 60% SCO manufactory temporary sources of	anufacturer_N/ 5 (CO), 50% (VCcturer and stace	OC), 81%	HCHO, 50% HA
Emissions unit ID C203 De Air pollutant(s) Controlled CO, HC Model No. N/A Serial No Installation date 10/ /2007 Contro Efficiency estimation method Ambient Impact Assessment is information must be completed by	sevice type Selection SHO, VOC, HAPS M SO N/A SCO manufactemporary sources on sunit (this is not core	anufacturer N/	OC), 81%	HCHO, 50% HA
Emissions unit ID C203 De Air pollutant(s) Controlled CO, HO Model No. N/A Serial No Installation date 10/ /2007 Control Efficiency estimation method Efficiency estimation method is information must be completed by plicable requirement for this emission	sevice type Selection SHO, VOC, HAPS M SO N/A SCO manufactor SCO manufactor SCO manufactor Inside stack diar	anufacturer_N/. b (CO), 50% (VC cturer and stace or when ambient mmon). meter (ft)	OC), 81%	HCHO, 50% HA

Emissions unit ID Description_3406-hp, 45 SIC Code (4-digit) SCC Code_20200	
3. Emissions Unit Description	egyTlau2
Primary useNatural Gas Compressor Engine ManufacturerCaterpillar Serial Number1YG00034 Boiler Type: Industrial boiler Process burner Other (describe)	Model NoG3612LE Installation Date9 / _/ 2007 Electric utility boiler
Boiler horsepower rating Boiler stea	m flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only): Hand fired Spreader stoker Underfeed Traveling grate Shaking grate Pulverized Actual Heat Input 25.7 MM BTU/hr Max. Design I	, wet bed Pulverized, dry bed

Describe each fuel you expect	ed to use during the term	of the permit.		
Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	Negligible	Negligible	1113 Btu/scf (HI	·IV)
D. Fuel Usage Rates				
Fuel Type	Annual Actua Usage	al Hourly	Maximum Usage Annual	
Natural Gas	N/A	23 Ms	scf 202 MM	scf
Titre 1 3 th mind and			Scatt Control	
. Associated Air Pollution Con	etrol Equipment			
Air pollutant(s) Controlled CO	, HCHO, VOC, HAPs M	anufacturer_N/A	<u> </u>	_
Model No. N/A Seria Installation date 9/_/2007 Con Efficiency estimation method_				
Installation date 9/_/2007 Con	SCO manufact t by temporary sources o	turer and stac	k testing	4
Installation date 9/_/2007 Con Efficiency estimation method_ . Ambient Impact Assessment his information must be completed	sco manufact t d by temporary sources of ssions unit (this is not continue)	r when ambient	k testing	
Installation date 9/_/2007 Con Efficiency estimation method_ . Ambient Impact Assessment his information must be completed eplicable requirement for this emis	sco manufact t d by temporary sources of ssions unit (this is not con linside stack diar	r when ambient nmon).	k testing	

	tion		
Emissions unit ID	C206 Descripti	on_3100-hp, 4SLB	compressor engine
SIC Code (4-digit)	1311 SC	CC Code 20200254	
B. Emissions Unit [Description	(in equal)	may " You "
	ral Gas Compressor I		mporary SourceYes _X_No odel No12V-AT27GL
Serial NumberC-	13271/2	Ir	stallation Date 3 / / 2001
Boiler Type: Ind	ustrial boiler Pr	ocess burner	Electric utility boiler
Other (describ	pe)	1900000000	Associated Air trongen Contra
	ting	Roiler steam flo	w (lb/hr)
Boiler horsepower ra	9	Boiler steam lie	(18/111)
	g Equipment (coal burni		
Type of Fuel-Burning	g Equipment (coal burni	ing only):	erOverfeed stoker
Type of Fuel-Burning Hand fired	Equipment (coal burni	ing only):Underfeed stoke	

Describe each fuel you expected to u	se during the term	of the permit.		
Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	(0	BTU Value of, gal., or lb.)
Natural Gas	Negligible Negligi		1113 Btu/scf (HHV	
. Fuel Usage Rates				100
Fuel Type	Annual Actua Usage	al Hourl		ım Usage Annual
Natural Gas	N/A	21 N	scf	180 MMscf
- MARTINE STATE ST				
telos ythans mela	No.			
. Associated Air Pollution Control Ed	quipment			
Emissions unit ID C206 Device Air pollutant(s) Controlled CO, HCHO Model No. N/A Serial No. No. N/A Serial No. No. Note Installation date 4/ /2001 Control efficiency estimation method	e typeSelecti D, VOC, HAPs_ M N/A ciency (%) _55%	anufacturer_N/	C), 45%	HCHO, 50% HA
Emissions unit IDC206 Device Air pollutant(s) Controlled_CO, HCHC Model NoN/A Serial NoN Installation date_4/_/2001 Control efficiency estimation method Ambient Impact Assessment is information must be completed by ten	e typeSelecti D, VOC, HAPs_ M N/A ciency (%) _55% SCO manufa	anufacturer_N/ (CO), 50% (VO	C), 45%	HCHO, 50% HA
Air pollutant(s) Controlled CO, HCHC Model No. N/A Serial No. No. N/A Serial No.	e typeSelecti D, VOC, HAPs_ M N/A ciency (%) _55% SCO manufa	anufacturer No. (CO), 50% (VO. cturer and standar when ambien mmon).	C), 45%	HCHO, 50% HA

Velocity (ft/sec) _____

Actual stack flow rate (ACFM) _____.___

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information	apid Montall
Emissions unit ID <u>C207</u> Description 4554-hp, 48	SLB compressor engine
SIC Code (4-digit) SCC Code SCC Code	254
B. Emissions Unit Description	pay/ bus
Primary use Natural Gas Compressor Engine	
Manufacturer Caterpillar Serial Number BLB00215	THE RESERVE OF THE PROPERTY OF
Boiler Type: Industrial boiler Process burner	
Other (describe)	Con Caled by Published Control Service
Boiler horsepower rating Boiler steam	m flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):	
Hand firedSpreader stokerUnderfeed	
Traveling grateShaking gratePulverized,	wet bed Pulverized, dry bed
Actual Heat Input 34.2 MM BTU/hr Max. Design H	leat Input 34.2 MM BTU/hr

Primary fuel type(s) Natural Gas	Standby	fuel type(s)N	/A
Describe each fuel you expected to use	during the term	of the pe	rmit.	
Fuel Type	Max. Sulfur Content (%)	Max. A Conte		BTU Value (cf, gal., or lb.)
Natural Gas	Negligible	Negligi	ole	1113 Btu/scf (HHV
. Fuel Usage Rates				
Fuel Type	Annual Actua Usage		Max	imum Usage Annual
Natural Gas	N/A	TEN .	31 Mscf	269 MMscf
Coffee and	ate to	ve Cataly	tic Oxidat	ion (SCO)
Emissions unit ID <u>C207</u> Device Air pollutant(s) Controlled <u>CO, HCHO,</u> Model No. <u>N/A</u> Serial No. <u>N/A</u>	typeSelecti VOC, HAPs_ M	anufacture	er <u>N/A</u>	
Emissions unit ID <u>C207</u> Device Air pollutant(s) Controlled <u>CO, HCHO,</u>	type <u>Selecti</u> VOC, HAPs M A ency (%) <u>60%</u>	anufacture	er <u>N/A</u>	1% HCHO, 50% HA
Emissions unit ID C207 Device Air pollutant(s) Controlled CO, HCHO, Model No. N/A Serial No. N/A Installation date 6/ /2008 Control efficiency estimation method Ambient Impact Assessment s information must be completed by temp	typeSelecti VOC, HAPs_ M A ency (%) _60% SCO manufactory sources of	(CO), 50%	(VOC), 8	1% HCHO, 50% HA
Air pollutant(s) Controlled CO, HCHO, Model No. N/A Serial No. N/A Installation date 6/ /2008 Control efficiency estimation method Ambient Impact Assessment s information must be completed by tempolicable requirement for this emissions un	typeSelecti VOC, HAPs_ M A ency (%) _60% SCO manufactory sources of	(CO), 50%	o (VOC), 8	1% HCHO, 50% HA

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information	- Despute CAS Submitted of the control of
Emissions unit ID De SIC Code (4-digit) 1311	escription 100-MMscfd TEG Dehydration Unit SCC Code 31000227
3. Emissions Unit Description	transcoloring
Equipment type TEG Dehydration	unit Temporary source: Yes X No
Manufacturer Gas Conditioner	rs Inc. Model No. N/A
Serial No39-1-08	Installation date/_/_N/A
Articles being coated or degreased	d N/A
Application method	N/A
Overspray (surface coating) (%)method	
No. of dryers N/A	Tank capacity (degreasers) (gal)
. Associated Air Pollution Control	I Equipment
Emissions unit ID FL-1 Dev	ice Type Open Flare
Manufacturer John Zink	Model No
Serial No. <u>VC-9122090</u>	Installation date 3 / 28 / 2012
	Capture efficiency (%)
Air pollutant(s) controlled_VOC, Cl	H4, HAP Efficiency estimation method design
. Ambient Impact Assessment	
This information must be completed by applicable requirement for this emission	y temporary sources or when ambient impact assessment is an ons unit (this is not common).
Stack height (ft)	99 s 1738 s 15 15 15 15 15 15 15 15 15 15 15 15 15
Stack temp (F)	
Actual stack flow rate (ACFM)	Velocity (ft/sec)

EUD-2

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

2

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (lb/gal)
Flash Tank Vent & Reboiler Vent Emissions	N/A	Natural Gas	63.6 MMscfd (CY2017)	100 MMscfd	36,500 MMscf/yr	33.9 lb/MMscf (uncontrolled air emissions)
	A X and					
A342 1	anto nun					
	0					
		and a				
Dot / Bell	<u>. S.</u> . ±lah i	OFFICE SEC				b.
		an Vermon				

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

Α.	General Information
	Emissions unit ID Description 500-bbl condensate storage tank SIC Code (4-digit) SCC Code40400311
В.	Emissions Unit Description
	Equipment type Condensate Storage Tank Temporary source: Yes X No
	Manufacturer Sivalls Model No
	Serial No98424 Installation date/_ / 2001
	Articles being coated or degreased N/A
	Application methodN/A
	Overspray (surface coating) (%) Drying method
	No. of dryers N/A Tank capacity (degreasers) (gal) 21,000
C.	Associated Air Pollution Control Equipment
	Emissions unit ID <u>C-1</u> Device Type <u>Enclosed Combustor</u>
	Manufacturer Cimarron Model No
	Serial No Installation date _2 _/ _/ _2012
	Control efficiency (%)
	Air pollutant(s) controlled_VOC, CH4, HAP
D.	Ambient Impact Assessment
	This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).
	Stack height (ft) Inside stack diameter (ft)
	Stack temp (F) Design stack flow rate (ACFM)

EUD-	2			

Actual stack flow rate (ACFM)	Velocity (ft/sec)	

2

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate	N/A	condensate	5456 bbl (CY2017)	60 bbl/day	21,900 bbl/yr	4.81 (uncontrolled air emissions)
	old K. Parv	With the E. E.		429		
1005	L. S. mitely o	Make 19	- 4			
		7				
	60 05	D Promise for	at company			
		luidne2 big	January Company			
E195 1 1	N elab not	(in try and the			N. T.	
NL ACT	no best male	Nan year.	120	10 1 2		

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information	The Annual Property of the Park of the Par
Emissions unit IDEL Descriptio	
SIC Code (4-digit)	SCC Code <u>31000220</u>
3. Emissions Unit Description	actions and a second
Equipment type Fugitive Equipment Le	aks Temporary source: Yes X No
ManufacturerN/A	Model No. N/A
Serial No. N/A	Installation date/_/_N/A
Articles being coated or degreasedN	/A
Application method	
Overspray (surface coating) (%)	Drying method
No. of dryers N/A Tank of	capacity (degreasers) (gal)
C. Associated Air Pollution Control Equip	pment
Emissions unit ID N/A Device Typ	peN/A
Manufacturer N/A Model No_	N/A
Serial NoN/A	Installation date/_/
Control efficiency (%)N/A	Capture efficiency (%)
Air pollutant(s) controlled N/A Effi	iciency estimation methodN/A
. Ambient Impact Assessment	
This information must be completed by temporapplicable requirement for this emissions unit	orary sources or when ambient impact assessment is an it (this is not common).
Stack height (ft) In	nside stack diameter (ft)
Stack temp (F) D	Design stack flow rate (ACFM)
Actual stack flow rate (ACEM)	Velocity (ff/sec)

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (lb/gal)
Natural Gas	N/A	vapors, liquids	N/A	N/A	N/A	N/A
	8, 45 f	eries y light		n 14 d		
AU	where					
					- = - nc	
	(10)	y (gradiae 15, 5)			No.	
				in the second		70.44
				3.76		
	Alf_ bo	Beer to a promote				

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information
Emissions unit IDCB Description Compressor Blowdowns (C202, C203, C204, C206, C207)
SIC Code (4-digit) SCC Code31000309
B. Emissions Unit Description
Equipment type Compressors (5) Temporary source: Yes X No
Manufacturer varies Model No. varies
Serial No N/A Installation date/_/_N/A
Articles being coated or degreasedN/A
Application methodN/A
Overspray (surface coating) (%) Drying method
No. of dryersN/A Tank capacity (degreasers) (gal)
C. Associated Air Pollution Control Equipment
Emissions unit ID N/A Device Type N/A
ManufacturerN/A Model NoN/A
Serial NoN/AInstallation date/_/
Control efficiency (%)
Air pollutant(s) controlled_N/A Efficiency estimation method N/A
D. Ambient Impact Assessment
This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).
Stack height (ft) Inside stack diameter (ft)
Stack temp (F) Design stack flow rate (ACFM)
Actual stack flow rate (ACFM) Velocity (ft/sec)

EUD-2

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

2

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (lb/gal)
Natural gas venting from compressor blowdowns	N/A	natural gas	N/A	N/A	N/A	See EMISS (EPA Form 5900-84)
	(mt_i)	MALE NO.		72 90		
)_ also	olin derl				
		A concern				
			* *	A		
	Alle bo	THE SAME SHAPE				
				N. 18		

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information
Emissions unit ID FL-1 Description Open Flare
SIC Code (4-digit) 1311 SCC Code 31000215
B. Emissions Unit Description
Primary use Flare for Dehydrator Control Temporary Source Yes X No
Manufacturer John Zink Model No. LHT-1-12-20-X-1/6-X
Serial Number
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)
Boiler horsepower rating Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design Heat Input1.3MM BTU/hr

Describe each fuel you expected to use	e during the term	of the	permit.			
Fuel Type	Max. Sulfur Content (%)	Max. Ash Content ((%)		(c	BTU Value (cf, gal., or lb.)	
Natural Gas Pilot Fuel	Negligible	Neg	ligible	111:	113 Btu/scf (HHV)	
Dehy Flash Gas & Still Vent Vapors	Negligible	Neg	ligible	1267 Btu/scf		
D. Fuel Usage Rates						
Fuel Type	Annual Actua Usage	al	Hourly		m Usage Annual	
Natural Gas Pilot Fuel	N/A		0.051 M	scf/hr	0.45 MMscf/y	
Dehy Flash Gas & Still Vent Vapors	N/A		1.11 Mscf/hr		9.7 MMscf/y	
consistency lane 1 (22) 1942			2.5			
. Associated Air Pollution Control Equ	uipment			,		
Emissions unit IDN/A Device ty Air pollutant(s) Controlled_N/A_ Manuf Model NoN/A Serial No	acturer <u>N/A</u>					
Installation date / / Control	NI/A					
Installation date / / Control Efficiency estimation method	N/A	11/11/		_		
Efficiency estimation method Ambient Impact Assessment is information must be completed by tem	porary sources o	or wher	n ambient	ATT. VA	assessment is ar	
Efficiency estimation method . Ambient Impact Assessment his information must be completed by templicable requirement for this emissions un	porary sources o	or wher mmon)	n ambient	ATT. VA		
Efficiency estimation method Ambient Impact Assessment his information must be completed by templicable requirement for this emissions un	porary sources on the cornit (this is not corn	or wher mmon) meter (n ambient (ft)	impact		

Federal Operating Permit Program (40 CFR Part 71)

EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information	Body and desired
Emissions unit ID Description_Enclosed 0 SIC Code (4-digit) SCC Code31000	
B. Emissions Unit Description	PQ VT Magin
Primary useCombustor for Tank Vapor Control ManufacturerCimarron Serial Number53000709 Boiler Type: Industrial boiler Process burner Other (describe)	Model No. 30" Standard ECD Installation Date 12 / / 2003 Electric utility boiler
Boiler horsepower rating Boiler stea	m flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):	Alexander Complete MA Marrier
Hand firedSpreader stokerUnderfeed	stokerOverfeed stoker
Traveling grateShaking gratePulverized	, wet bed Pulverized, dry bed
Actual Heat Input <u>0.688</u> MM BTU/hr Max. Des	sign Heat Input <u>0.688</u> MM BTU/hr

Describe each fuel you expected to	use during the term	of th	he permit.			
Fuel Type	Max. Sulfur Content (%)			BTU Value cf, gal., or lb.)		
Natural Gas Pilot	Negligible	Ne	gligible	111	3 Btu/scf (HHV)	
Condensate Tank Vapors	Negligible	Ne	egligible	1710 Btu/scf		
). Fuel Usage Rates	7- min 6					
Fuel Type	Annual Actua Usage	al	Hourly		ım Usage Annual	
Natural Gas	N/A	0.013 Mscf		scf/hr	0.11 MMscf/y	
Condensate Tank Vapors	N/A	0.39 Mscf/hr		cf/hr	3.44 MMscf/	
. Associated Air Pollution Control E	quipment					
Emissions unit IDN/A Device Air pollutant(s) Controlled_N/A_ Mar Model NoN/A Serial No Installation date// Cont Efficiency estimation method	rol efficiency (%)					
Ambient Import Assessment			on ambient	impact	assessment is ar	
. Ambient Impact Assessment is information must be completed by tender to the plicable requirement for this emissions				7.		
is information must be completed by te	unit (this is not cor	nmoi	n).			
nis information must be completed by templicable requirement for this emissions	unit (this is not cor	mmoi	n). r (ft)			

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>C202</u>

B. Identification and Quantification of Emissions

	tym di	Emission Rat	es		
Air Pollutants	Actual				
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
NOx	NA **	7.5	32.9	11104-93-1	
co	NA **	7.5	32.9	630-08-0	
voc	NA **	4.1	17.9	NA	
SO ₂	NA **	0	0.1	7446-09-5	
PM ₁₀	NA **	0.3	1.1	NA	
1,3-Butadiene	NA **	0	0	106-99-0	
Acetaldehyde	NA **	0.1	0.5	75-07-0	
Acrolein	NA **	0.1	0.3	107-02-8	
Benzene	NA **	0	0	71-43-2	
Ethylbenzene	NA **	0	0	100-41-4	
Formaldehyde	NA **	0.4	1.6	50-00-0	
Methanol	NA **	0	0.1	67-56-1	
PAH	NA **	0	0	83-32-9	
Toluene	NA **	0	0	108-88-3	
Xylene	NA **	0	0	1330-20-7	

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID C203

B. Identification and Quantification of Emissions

	200	Emission Rat	es	
Air Pollutants	Actual	Potent	ial to Emit	
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx	NA **	7.5	32.9	11104-93-1
CO MARAE	NA **	7.5	32.9	630-08-0
voc	NA **	4.1	17.9	NA
SO ₂	NA **	0	0.1	7446-09-5
PM ₁₀	NA **	0.3	1.1	NA
1,3-Butadiene	NA **	0	0	106-99-0
Acetaldehyde	NA **	0.1	0.5	75-07-0
Acrolein	NA **	0.1	0.3	107-02-8
Benzene	NA **	0	0	71-43-2
Ethylbenzene	NA **	0	0	100-41-4
ormaldehyde	NA **	0.4	1.6	50-00-0
Wethanol	NA **	0	0.1	67-56-1
PAH	NA **	0	0	83-32-9
Toluene	NA **	0	0	108-88-3
Kylene	NA **	0	0	1330-20-7

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>C204</u>

B. Identification and Quantification of Emissions

	9111	Emission Rat	es	
Air Pollutants	Actual			
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx	NA **	7.5	32.9	11104-93-1
co	NA **	7.5	32.9	630-08-0
voc	NA **	4.1	17.9	NA
SO ₂	NA **	0	0.1	7446-09-5
PM ₁₀	NA **	0.3	1.1	NA
1,3-Butadiene	NA **	0	0	106-99-0
Acetaldehyde	NA **	0.1	0.5	75-07-0
Acrolein	NA **	0.1	0.3	107-02-8
Benzene	NA **	0	0	71-43-2
Ethylbenzene	NA **	0	0	100-41-4
Formaldehyde	NA **	0.4	1.6	50-00-0
Wethanol	NA **	0	0.1	67-56-1
PAH	NA **	0	0	83-32-9
Toluene	NA **	0	0	108-88-3
Xylene	NA **	0	0	1330-20-7

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>C206</u>

B. Identification and Quantification of Emissions

	Ampai Fi	Emission Rat	es	
Air Pollutants	Actual Potential to Emit			
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx	NA **	8.8	38.9	11104-93-1
СО	NA **	6.8	29.9	630-08-0
VOC	NA **	2.5	11.0	NA
SO ₂	NA **	0	0.1	7446-09-5
PM ₁₀	NA **	0.2	1.0	NA
1,3-Butadiene	NA **	0	0	106-99-0
Acetaldehyde	NA **	0.1	0.4	75-07-0
Acrolein	NA **	0.1	0.3	107-02-8
Benzene	NA **	0	0	71-43-2
Ethylbenzene	NA **	0	0	100-41-4
Formaldehyde	NA **	0.6	2.7	50-00-0
Methanol	NA **	0	0.1	67-56-1
PAH	NA **	0	0	83-32-9
Toluene	NA **	0	0	108-88-3
Xylene	NA **	0	0	1330-20-7

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>C207</u>

B. Identification and Quantification of Emissions

	pr. 16 6	Emission Rat	es	
Air Pollutants	Actual			
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx	NA **	10.0	44.0	11104-93-1
СО	NA **	10.0	44.0	630-08-0
voc	NA **	5.4	23.4	NA
SO ₂	NA **	0	0.1	7446-09-5
PM ₁₀	NA **	0.3	1.5	NA
1,3-Butadiene	NA **	0	0	106-99-0
Acetaldehyde	NA **	0.1	0.6	75-07-0
Acrolein	NA **	0.1	0.4	107-02-8
Benzene	NA **	0	0	71-43-2
Ethylbenzene	NA **	0	0	100-41-4
Formaldehyde	NA **	0.5	2.2	50-00-0
Methanol	NA **	0	0.2	67-56-1
PAH	NA **	0	0	83-32-9
Toluene	NA **	0	0	108-88-3
Xylene	NA **	0	0	1330-20-7

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __D-1

B. Identification and Quantification of Emissions

	period i				
	Actual	Actual Potential to Emit			
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
voc	NA **	1.6	15.3	NA	
Benzene	NA **	0.2	1.9	71-43-2	
Ethylbenzene	NA **	0	0.1	100-41-4	
Toluene	NA **	0.1	2.7	108-88-3	
Xylene	NA **	0	1.1	1330-20-7	
n-Hexane	NA **	0.1	0.3	110-54-3	
n-mer	in 1			- 0	

Applied Technology Services

1210 D Street, Rock Springs, WY 82901 (307) 352-7292

Meter Name:

WONSITS VALLEY COMP. FUEL 301

Field Name:

REDWASH GATHERING

Analyst:

PHILLIPS

Meter Location #:

006086

Report Date:

09/04/2012 12:39

Cylinder Pressure: Line Pressure:

1046

Sample Dates(s): 09/04/2012 to 09/04/2012

Flowing Temp: 112

Gas Analysis by Chromatograph @14.73

NAME	MOLE%	BTU	SG	GPM
Nitrogen	0.2881	0.0000	0.0028	0.0000
Methane	90.2971	914.1107	0.5002	0.0000
CO2	0.9650	0.0000	0.0147	0.0000
Ethane	4.7038	83.4357	0.0488	1.2577
H2S	0.0000	0.0000	0.0000	0.0000
Propane	1.9810	49.9593	0.0302	0.5456
i-Butane	0.4325	14.0970	0.0087	0.1415
n-Butane	0.5586	18.2654	0.0112	0.1761
i-Pentane	0.2158	8.6539	0.0054	0.0789
n-Pentane	0.1673	6.7221	0.0042	0.0606
Hexanes	0.1796	8.5614	0.0053	0.0738
Heptanes	0.1436	7.9200	0.0050	0.0662
Octanes	0.0676	4.2341	0.0027	0.0346
Nonanes	0.0000	0.0000	0.0000	0.0000
Ideal Total	100.0000	1115.9595	0.6390	2.4351

Gross BTU/Real Cu Fo	. @ 60 deg	F	
Pressure Base =			15.025
Dry =	1118.9694	1112.8759	1141.4408
Saturated =	1100.7826	1094.6871	1123.2611
Actual BTU =	1118.9694	1112.8759	1141.4408
Real S.G. =	0.640479	0.640470	0.640514
Compressibility =	0.997310	0.997325	0.997256

Gasoline Content
Pressure Base = 14.73
Propane $GPM = 0.5456$
Butane $GPM = 0.3176$
14# Gasoline GPM = 0.3455
26# Gasoline GPM = 0.4847
Total GPM = 2.4351

Sulfur Content Mercaptans ppm = N/AH2S ppm = N/A

Dewpoints H2O #/mmcf = N/AHydrocarbon = N/A @ psig = N/A

Component	Mol%	Wt%	LV%
Benzene	1.1333	0.8452	0.6758
Toluene	2.9510	2.5958	2.1058
Ethylbenzene	0.2203	0.2233	0.1812
M&P Xylene	2.1580	2.1873	1.7807
O-Xylene	0.3636	0.3685	0.2946
2,2,4-Trimethylpentane	1.3747	1.4991	1.4722

Data File:

Wonsit Valley Compressor

Page #2

GRI E&P TANK INFORMAT	TION				
Component N	lol%	Wt%	LV%		
H2S	THE PERSON NAMED IN COLUMN				
O2					
CO2	0.1648	0.0692	0.0599		
N2	0.0264	0.0071	0.0062		
C1	9.8520	1.5088	3.5573		
C2	2.8039	0.8049	1.5979		
C3	3.3353	1.4040	1.9580		
IC4	1.5152	0.8408	1.0566		
NC4	3.1131	1.7274	2.0914		
IC5	2.6843	1.8489	2.0934		
NC5	2.7802	1.9150	2.1475		
Hexanes	3.6946	3.0396	3.2456		
Heptanes	18.4092	16.8698	16.3234		
Octanes	7.8836	8.5894	8.3989		
Nonanes	4.9105	6.0127	5.8954		
Benzene	1.1333	0.8452	0.6758		
Toluene	2.9510	2.5958	2.1058		
E-Benzene	0.2203	0.2233	0.1812		
Xylene	2.5216	2.5558	2.0753		
n-C6	3.2163	2.6461	2.8184		
2,2,4-Trimethylpentane	1.3747	1.4991	1.4722		
C10 Plus					
C10 Mole %	27.4103	44.9973	42.2399		
Molecular Wt.	174.0560				
Specific Gravity	0.7537				
Total	100.00	100.00	100.00		

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901 (307) 352-7292

		1 15/			
LIMS ID:	N/A		escription:	Wonsit Valley Co	ompressor
Analysis Date/Time:	8/9/2011		ield:	Wonsit Valley	COMPAND TO THE PARTY OF THE PAR
Analyst Initials:	AST	N	1L#:	QEP FS	
Sample Temperature:	60	G	C Method:	Quesliq1.M	
Sample Pressure:	200	D	ata File:	QPC34.D	
Date Sampled:	8/5/2011	Ir	strument ID:	1	
Component	Mol%		Wt%		LV%
Methane	9.8520		1.5088		3.5573
Ethane	2.8039		0.8049		1.5979
Propane	3.3353	i	1.4040		1.9580
Isobutane	1.5152		0.8408		1.0566
n-Butane	3.1131		1.7274		2.0914
Neopentane	0.0405		0.0279		0.0331
Isopentane	2.6438		1.8210		2.0603
n-Pentane	2.7802		1.9150		2.1475
2,2-Dimethylbutane	0.1724		0.1418		0.1534
2,3-Dimethylbutane	0.5786		0.4760		0.5053
2-Methylpentane	1.8129	ĺ	1.4915		1.6035
3-Methylpentane	1.1307		0.9303		0.9834
n-Hexane	3.2163		2.6461		2.8184
Heptanes	19.5425		17.7150	1	16.9992
Octanes	12.2093		12.6843		11.9769
Nonanes	7.6524		8.7918		8.1519
Decanes plus	27.4103		44.9973	4	12.2399
Nitrogen	0.0264		0.0071		0.0062
Carbon Dioxide	0.1648		0.0692		0.0599
Total	100.0000		100.0000	10	0.0000
Global Properties		Units			
Avg Molecular Weight	104.7501	gm/mole			
Pseudocritical Pressure	441.46	psia			
Pseudocritical Temperatu					
Specific Gravity	0.70731				
Liquid Density	5.8968	4.4.5.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4			
Liquid Density	247.67				
Specific Gravity	2.5655				
SCF/bbl		SCF/bbl			
SCF/gal		SCF/gal			
MCF/gal		MCF/gal			
gal/MCF		gal/MCF			
Net Heating Value		BTU/SCF at 6	30°F		
Net Heating Value		BTU/lb at 60°			
Gross Heating Value		BTU/SCF at 6			
Gross Heating Value		BTU/lb at 60°			
Gross Heating Value		BTU/gal at 60			
ADI Crositu	60 55272460	for an over a transfer of the contraction of the co			

API Gravity

MON

RON

RVP

68.55372468

46.6

48.1

529.396 psia

Page #1

Component	Mol%	Wt%	LV%
Benzene	0.0174	0.0734	0.0272
Toluene	0.0188	0.0932	0.0350
Ethylbenzene	0.0005	0.0028	0.0010
M&P Xylene	0.0040	0.0229	0.0086
O-Xylene	0.0005	0.0027	0.0010
2,2,4-Trimethylpentane	0.0063	0.0388	0.0176
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0422	0.1914	0.0801
Methylcyclohexane	0.0582	0.3078	0.1304
Description:	Wonsit Valley Comp	Inlet	

GRI GlyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	1.0785	2.5591	1.0255
Hydrogen Sulfide	0.0000	0.0000	0.0000
Nitrogen	0.2834	0.4280	0.1733
Methane	90.1296	77.9557	85.1793
Ethane	4.7115	7.6382	7.0446
Propane	2.0675	4.9153	3.1783
sobutane	0.4107	1.2870	0.7496
n-Butane	0.5215	1.6343	0.9173
Isopentane	0.2116	0.8228	0.4328
n-Pentane	0.1578	0.6140	0.3189
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0686	0.3185	0.1572
Cyclohexane	0.0422	0.1914	0.0801
Other Hexanes	0.1083	0.5033	0.2492
Heptanes	0.0694	0.3773	0.1759
Methylcyclohexane	0.0582	0.3078	0.1304
2,2,4 Trimethylpentane	0.0063	0.0388	0.0176
Benzene	0.0174	0.0734	0.0272
Toluene	0.0188	0.0932	0.0350
Ethylbenzene	0.0005	0.0028	0.0010
Xylenes	0.0045	0.0256	0.0096
C8+ Heavies	0.0337	0.2135	0.0972
Subtotal	100.0000	100.0000	100.0000
Oxygen	0.0000	0.0000	0.0000
Total	100.0000	100.0000	100.0000

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901 (307) 352-7292

3:01 PM

LIMS ID:

N/A

Description:

Wonsit Valley Comp Inlet

Analysis Date/Time:

9/5/2012

Field:

Wansit Valley

Analyst Initials: Instrument ID: ABK

ML#:

QEP

Data File:

Instrument 1 QPC35.D GC Method:

Quesbtex

Data File.	QPC35.D
Date Sampled:	8/31/2012

Component	Mol%			₩t%		LV%	
Methane	90.1296		77.9557		85.1793		
Ethane	4.7115		7.6382		7.0446		
Propane	2.0675		4.9153		3.1783		
Isobutane	0.4107		1.2870		0.7496		
n-Butane	0.5215		1.6343		0.9173		
Neopentane	0.0095		0.0368		0.0202		
Isopentane	0.2021		0.7860		0.4126		
n-Pentane	0.1578		0.6140		0.3189		
2,2-Dimethylbutane	0.0073		0.0341		0.0171		
2,3-Dimethylbutane	0.0184		0.0856		0.0421		
2-Methylpentane	0.0528		0.2453		0.1222		
3-Methylpentane	0.0298		0.1383		0.0678		
n-Hexane	0.0686		0.3185		0.1572		
Heptanes	0.2123		1.0819		0.4662		
Octanes	0.0252		0.1539		0.0701		
Nonanes	0.0120		0.0766		0.0326		
Decanes plus	0.0015		0.0114		0.0051		
Nitrogen	0.2834		0.4280		0.1733		
Carbon Dioxide	1.0785		2.5591		1.0255		
Oxygen	0.0000		0.0000		0.0000		
Hydrogen Sulfide	0.0000		0.0000		0.0000		
Total	100.0000		100.0000	711	100.0000		
Global Properties		Units					
Gross BTU/Real CF	1118.0		BTU/SCF a	t 60°F and14	.73 psia		
Sat. Gross BTU/Real CF	1099.7		BTU/SCF a	t 60°F and 14	.73 psia		
Gas Compressibility (Z)	0.9973						
Specific Gravity	0.6420		air=1				
Avg Molecular Weight	18.548		gm/mole				
Propane GPM	0.566625		gal/MCF				
Butane GPM	0.298042		gal/MCF				
Gasoline GPM	0.293426		gal/MCF				
26# Gasoline GPM	0.458522		gal/MCF				
Total GPM	2.644928		gal/MCF				
Base Mol%	99.735		%v/v				
Sample Temperature:	98		°F				
Sample Pressure:	98		psig				
H2SLength of Stain Tube	e N/A		ppm				

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl Dehy Drip Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Gasoline (RVP 12)	36.57	699.04	735.61			

Vapor Space Outage (ft):	4,0990
Working Losses (lb):	36.5682
Vapor Molecular Weight (lb/lb-mole):	64.0000
Vapor Pressure at Daily Average Liquid	6.0570
Surface Temperature (psia):	5.6573
Annual Net Throughput (gal/yr.):	4,241.8985
Annual Turnovers	1,0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4.241.8985
Maximum Liquid Height (ft):	8,0000
Tank Diameter (ft):	9,5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	735.6060

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl Dehy Drip Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
Standing Losses (lb):	699.0378
Vapor Space Volume (cu ft):	290,5431
Vapor Density (lb/cu ft):	0.0657
Vapor Space Expansion Factor:	0.2237
Vented Vapor Saturation Factor:	0.4486
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	290.5431
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	4.0990
Tank Shell Height (ft):	8.0000
Average Liquid Height (ft)	4.0000
Roof Outage (ft):	0.0990
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0990
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	4.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0657
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	64.0000
Surface Temperature (psia):	5.6573
Daily Avg. Liquid Surface Temp. (deg. R):	513.5939
Daily Average Ambient Temp. (deg. F):	51.9625
Ideal Gas Constant R	2000000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.6525
Tank Paint Solar Absorptance (Shell):	0,1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,452,1184
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2237
Daily Vapor Temperature Range (deg. R):	23.7301
Daily Vapor Pressure Range (psia):	1.2998
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	5.6573
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	5.0372
Surface Temperature (psia):	6.3370
Daily Avg. Liquid Surface Temp. (deg R):	513.5939
Daily Min. Liquid Surface Temp. (deg R):	507.6614
Daily Min. Liquid Surface Temp. (deg R):	
Daily Max. Liquid Surface Temp. (deg R). Daily Ambient Temp. Range (deg. R):	519.5264 23.3583
	1 1977 1976
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor	0.4486
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	5.6573

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl Dehy Drip Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

			aily Liquid S		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 12)	All	53.92	47.99	59.86	51.98	5.6573	5.0372	6.3370	64.0000			92.00	Option 4: RVP=12, ASTM Slope=3

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification:

100 bbl Dehy Drip Tank Salt Lake City

City:

Salt Lake City Utah

State: Company:

QEP Resources

Type of Tank:

Vertical Fixed Roof Tank

Description:

QEP Resources Wonsits Valley Compressor Station 100 bbl Tank Dehy Drip Tank

Tank Dimensions

Shell Height (ft): Diameter (ft): Liquid Height (ft): 8.00 9.50 8.00

Avg. Liquid Height (ft): Volume (gallons): Turnovers: 4.00 4,241.90 1.00

Net Throughput(gal/yr):

4,241.90

Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: Shell Condition Roof Color/Shade: White/White Good White/White

Good

Cone

N

Roof Characteristics

Roof Condition:

Type:

Height (ft)

0.00

Slope (ft/ft) (Cone Roof)

0.06

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

65 gal TEG tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Components	Losses(lbs)						
	Working Loss	Breathing Loss	Total Emissions				
Ethylene Glycol	0.00	0.01	0.02				

Vapor Space Outage (ft):	3.3833
Working Losses (lb):	0.0020
Vapor Molecular Weight (lb/lb-mole):	62.0682
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0005
Annual Net Throughput (gal/yr.):	2,744.9000
Annual Turnovers:	1.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	2,744,9000
Maximum Liquid Height (ft):	7.3000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1,0000
Total Losses (lb):	0.0163

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

65 gal TEG tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Standing Losses (lb):	0.0143
Vapor Space Volume (cu ft):	170,0649
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0415
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	170.0649
Tank Diameter (ft):	8.0000
Vapor Space Outage (ft):	3.3833
Tank Shell Height (ft):	7.3000
Average Liquid Height (ft):	4.0000
Roof Outage (ft).	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft)	0.0833
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	4.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (Ib/lb-mole) Vapor Pressure at Daily Average Liquid	62.0682
Surface Temperature (psia):	0.0005
Daily Avg. Liquid Surface Temp. (deg. R):	513.5939
Daily Average Ambient Temp. (deg. F):	51 9625
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.6525
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,452.1184
Vapor Space Expansion Factor	2/16/00v22
Vapor Space Expansion Factor:	0.0415
Daily Vapor Temperature Range (deg. R):	23.7301
Daily Vapor Pressure Range (psia):	0.0003
Breather Vent Press, Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	0.0005
Vapor Pressure at Daily Minimum Liquid	0.0000
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0003
Surface Temperature (psia):	0.0007
	0.0007
Daily Avg. Liquid Surface Temp. (deg R):	513.5939
Daily Min. Liquid Surface Temp. (deg R):	507.6614
Daily Max, Liquid Surface Temp, (deg R): Daily Ambient Temp, Range (deg, R):	519.5264 23.3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
	0.9999
Vapor Pressure at Daily Average Liquid:	

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

65 gal TEG tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Mixture/Component		Daily Liquid Surf. Temperature (deg F)		Liquid Bulk Temp	Vapor Pressure (psia)			Liquid Mass		Mol.	Basis for Vapor Pressure		
	Month	nth Avg. Min. Max.	(deg F)	Avg.	Min.	Max.	Weight.		Fract.	Weight	Calculations		
Ethylene Glycol	All	53.92	47.99	59.86	51.98	0.0005	0.0003	0.0007	62.0682			62.07	Option 2: A=8.0908, B=2088.9, C=203.5

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City:

65 gal TEG tank Salt Lake City

State:

Utah

Company:

QEP Resources

Type of Tank:

Vertical Fixed Roof Tank

Description:

QEP Resources Wonsits Valley Compressor Station 65 bbl Tank TEG

Tank Dimensions

Shell Height (ft): Diameter (ft):

7.30 8.00

Liquid Height (ft): Avg. Liquid Height (ft):

7.30 4.00 2,744.90

Volume (gallons): Turnovers:

1.00

Net Throughput(gal/yr):

2,744.90

Is Tank Heated (y/n):

N

Paint Characteristics

Shell Color/Shade:

White/White

Shell Condition

Good

Roof Color/Shade:

White/White

Roof Condition:

Good

Roof Characteristics

Type:

Cone

Height (ft)

0.00

Slope (ft/ft) (Cone Roof)

0.06

Breather Vent Settings

Vacuum Settings (psig):

-0.03 0.03

Pressure Settings (psig)

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl Used EG Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Components	Losses(lbs)								
	Working Loss	Breathing Loss	Total Emissions						
Ethylene Glycol	0.01	0.02	0.03						

Vapor Space Outage (ft):	4.0990
Working Losses (lb):	0.0077
Vapor Molecular Weight (lb/lb-mole):	62.0682
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0005
Annual Net Throughput (gal/yr.):	10.604,7463
Annual Turnovers	2.5000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4.241.8985
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	9.5000
Working Loss Product Factor:	1.0000
T-1-11	
Total Losses (lb):	0.0321

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl Used EG Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
Standing Losses (lb):	0.0244
Vapor Space Volume (cu ft):	290.5431
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0415
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	290.5431
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	4.0990
Tank Shell Height (ft)	8.0000
Average Liquid Height (ft):	4.0000
Roof Outage (ft):	0.0990
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0990
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft)	4.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
	0.0000
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62,0682
Surface Temperature (psia):	0.0005
Daily Avg. Liquid Surface Temp. (deg. R):	513,5939
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	51.9625
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.6525
Tank Paint Solar Absorptance (Shell):	0,1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	71-17-77
Factor (Btu/sqft day):	1,452.1184
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0415
Daily Vapor Temperature Range (deg. R):	23.7301
Daily Vapor Pressure Range (psia):	0.0003
Breather Vent Press. Setting Range(psia). Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	0.0005
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0003
Surface Temperature (psia):	0.0007
Daily Avg. Liquid Surface Temp. (deg R):	513.5939
Daily Min. Liquid Surface Temp. (deg R):	
	507.6614
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	519.5264 23.3583
TOTAL DESIGNATION TO SALES AND	
Vented Vapor Saturation Factor	N2041839
Vented Vapor Saturation Factor:	0.9999
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0005

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl Used EG Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Mixture/Component		Liquid ally Liquid Surf. Bulk operature (deg F) Temp		Vapor Pressure (psia)		Vapor Mol.		Liquid Vapor Mass Mass	or ss Mol.	Basis for Vapor Pressure			
	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Ethylene Glycol	All	53.92	47.99	59.86	51.98	0.0005	0.0003	0.0007	62.0682			62.07	Option 2: A=8.0908, B=2088.9, C=203.5

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification:

100 bbl Used EG Tank

City:

Salt Lake City

State:

Utah

Company:

QEP Resources

Type of Tank:

Vertical Fixed Roof Tank

Description:

QEP Resources Wonsits Valley Compressor Station 100 bbl Tank Used Ethlylene Glycol

Tank Dimensions

Shell Height (ft): Diameter (ft):

8.00 9.50

Liquid Height (ft): Avg. Liquid Height (ft):

8.00 4.00 4.241.90

Volume (gallons): Turnovers:

2.50

Net Throughput(gal/yr):

10,604.75

Is Tank Heated (y/n):

N

Paint Characteristics

Shell Color/Shade:

White/White

Shell Condition Roof Color/Shade: Good White/White

Roof Condition:

Good

Roof Characteristics

Type:

Cone

Height (ft) Slope (ft/ft) (Cone Roof) 0.00 0.06

Breather Vent Settings

Vacuum Settings (psig):

-0.03

Pressure Settings (psig)

0.03

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl Used Lube Oil Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Components	Losses(lbs)								
	Working Loss	Breathing Loss	Total Emissions						
Crude oil (RVP 5)	41.54	158.86	200.39						

Vapor Space Outage (ft):	4,0990
10.235521 - 170	
Working Losses (lb):	41,5365
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2,5505
Annual Net Throughput (gal/yr.):	18,240,1637
Annual Turnovers:	4.3000
Turnover Factor:	1,0000
Maximum Liquid Volume (gal):	4.241.8985
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	9,5000
Working Loss Product Factor	0.7500
Total Lagger (Ib)	000 00 10
Total Losses (lb):	200 3943

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl Used Lube Oil Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
Standing Losses (Ib):	158.8578
Vapor Space Volume (cu ft):	290.5431
Vapor Density (lb/cu ft):	0.0231
Vapor Space Expansion Factor:	0.1006
Vented Vapor Saturation Factor:	0.6435
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	290.5431
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	4.0990
Tank Shell Height (ft):	8.0000
Average Liquid Height (ft):	4.0000
Roof Outage (ft):	0.0990
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0990
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	4.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0231
Vapor Molecular Weight (lb/lb-mole)	50.0000
Vapor Pressure at Daily Average Liquid	160-2020-0
Surface Temperature (psia):	2.5505
Daily Avg. Liquid Surface Temp. (deg. R):	513.5939
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	51.9625
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.6525
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0,1700
Daily Total Solar Insulation Factor (Btu/soft day):	1,452,1184
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.1006
Daily Vapor Temperature Range (deg. R):	23.7301
Daily Vapor Pressure Range (psia).	0.6092
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.5505
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	2.200
Vapor Pressure at Daily Maximum Liquid	2.2605
Surface Temperature (psia).	2.8697
Daily Avg. Liquid Surface Temp. (deg R):	513,5939
Daily Min, Liquid Surface Temp. (deg R):	507,6614
Daily Max. Liquid Surface Temp. (deg R):	519.5264
Daily Ambient Temp. Range (deg. R).	23.3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.0404
Vapor Pressure at Daily Average Liquid:	0.6435
Surface Temperature (psia):	2 5505
Condoc Temperature (haid)	2.0000

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl Used Lube Oil Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Mixture/Component	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp	Bulk				Liquid Mass		Mol.	Basis for Vapor Pressure	
	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.		Fract.	Fract.		Calculations
Crude oil (RVP 5)	All	53.92	47.99	59.86	51.98	2.5505	2.2605	2.8697	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification:

100 bbl Used Lube Oil Tank

City:

Salt Lake City

State:

Utah

Company: Type of Tank: **QEP Resources**

Vertical Fixed Roof Tank

Description:

QEP Resources Wonsits Valley Compressor Station 100 bbl Tank Used Lube Oil

Tank Dimensions

Shell Height (ft): Diameter (ft):

8.00 9.50

Liquid Height (ft): Avg. Liquid Height (ft): Volume (gallons):

8.00 4.00 4,241.90 4.30

Turnovers: Net Throughput(gal/yr):

Is Tank Heated (y/n):

18,240.16

N

Paint Characteristics

Shell Color/Shade: Shell Condition Roof Color/Shade: White/White Good White/White

Roof Condition:

Good

Roof Characteristics

Type:

Cone

Height (ft) Slope (ft/ft) (Cone Roof) 0.00 0.06

Breather Vent Settings

Vacuum Settings (psig):

-0.03

Pressure Settings (psig)

0.03

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl New Lube Oil Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Components	Losses(lbs)								
	Working Loss	Breathing Loss	Total Emissions						
Crude oil (RVP 5)	407.32	158.86	566.17						

Vapor Space Outage (ft):	4.0990
Working Losses (lb):	407.3152
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	2.5505
Annual Net Throughput (gal/yr.):	309,658,5924
Annual Turnovers:	73,0000
Turnover Factor:	0.5776
Maximum Liquid Volume (gal):	4,241.8985
Maximum Liquid Height (ft): Tank Diameter (ft):	8.0000 9.5000
Working Loss Product Factor:	0.7500
Total Losses (lb):	566 1730

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl New Lube Oil Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
Standing Losses (lb):	158.8578
Vapor Space Volume (cu ft):	290.5431
Vapor Density (lb/cu ft):	0.0231
Vapor Space Expansion Factor:	0,1006
Vented Vapor Saturation Factor.	0.6435
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	290,5431
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	4.0990
Tank Shell Height (ft):	8.0000
Average Liquid Height (ft):	4.0000
Roof Outage (ft)	0.0990
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0990
Roof Height (ft):	0.0000
Roof Slope (ft/ft);	0.0625
Shell Radius (ft):	4.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0231
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	50.0000
Surface Temperature (psia):	2.5505
Daily Avg. Liquid Surface Temp. (deg. R):	513.5939
Daily Average Ambient Temp. (deg. F):	51.9625
Ideal Gas Constant R	ASSESSED
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R).	511.6525
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation Factor (Btu/sqft day):	4 450 4404
- The state of the	1,452.1184
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.1006
Daily Vapor Temperature Range (deg. R):	0.1006 23.7301
Daily Vapor Pressure Range (psia):	0.6092
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.000.000
Surface Temperature (psia). Vapor Pressure at Daily Minimum Liquid	2,5505
Surface Temperature (psia):	2.2605
Vapor Pressure at Daily Maximum Liquid	0.0007
Surface Temperature (psia)	2.8697
Daily Avg. Liquid Surface Temp. (deg R):	513.5939
Daily Min. Liquid Surface Temp. (deg R):	507,6614
Daily Max, Liquid Surface Temp. (deg R):	519.5264
Daily Ambient Temp. Range (deg. R).	23.3583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6435
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	2.5505

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl New Lube Oil Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Mixture/Component			ally Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	53.92	47.99	59.86	51.98	2.5505	2.2605	2.8697	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification:

100 bbl New Lube Oil Tank

City:

Salt Lake City

State:

Utah

Company:

QEP Resources Vertical Fixed Roof Tank

Type of Tank: Description:

QEP Resources Wonsits Valley Compressor Station 100 bbl Tank New Lube Oil

Tank Dimensions

Shell Height (ft): Diameter (ft): Liquid Height (ft): Avg. Liquid Height (ft):

8.00 9.50 8.00 4.00 4.241.90

Volume (gallons): Turnovers:

73.00

Net Throughput(gal/yr): Is Tank Heated (y/n):

309,658.59

N

Paint Characteristics

Shell Color/Shade: Shell Condition Roof Color/Shade:

White/White Good White/White

Roof Condition:

Good

Roof Characteristics

Type:

Cone

Height (ft) Slope (ft/ft) (Cone Roof) 0.00 0.06

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

100 bbl New EG Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Ethylene Glycol	0.01	0.02	0.03				

Vapor Space Outage (ft):	4.0990
Working Losses (lb):	0.0077
Vapor Molecular Weight (lb/lb-mole):	62.0682
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0005
Annual Net Throughput (gal/yr.):	10,604.7463
Annual Turnovers:	2,5000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,241,8985
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	9.5000
Working Loss Product Factor	1.0000
Total Losses (th):	0.0321

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

100 bbl New EG Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
Standing Losses (lb):	0.0244
Vapor Space Volume (cu ft):	290,5431
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0415
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	290,5431
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	4.0990
Tank Shell Height (ft):	8.0000
Average Liquid Height (ft):	4.0000
Roof Outage (ft):	0.0990
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0990
Roof Height (ft):	0.0000
Roof Slope (ft/ft)	0.0625
Shell Radius (ft):	4.7500
Vapor Density	
Vapor Density (lb/cu ft):	0,0000
Vapor Molecular Weight (lb/lb-mole):	62,0682
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0005
Daily Avg. Liquid Surface Temp. (deg. R):	513.5939
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	51,9625
(psia cuft / (lb-mol-deg R));	10.731
Liquid Bulk Temperature (deg. R):	511.6525
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof).	0.1700
Daily Total Solar Insulation	
Factor (Blu/sqft day):	1,452.1184
Japor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0415
Daily Vapor Temperature Range (deg. R):	23.7301
Daily Vapor Pressure Range (psia):	0.0003
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	0.0005
Surface Temperature (psia):	0.0003
Vapor Pressure at Daily Maximum Liquid	0.0003
Surface Temperature (psia):	0,0007
Daily Avg. Liquid Surface Temp. (deg R):	513.5939
Daily Min. Liquid Surface Temp. (deg R):	507.6614
Daily Max. Liquid Surface Temp. (deg R):	519.5264
Daily Ambient Temp. Range (deg. R):	23.3583
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
	0.9999
Vapor Pressure at Daily Average Liquid:	712777

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

100 bbl New EG Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Ethylene Glycol	All	53.92	47,99	59.86	51.98	0.0005	0.0003	0.0007	62.0682	-		62.07	Option 2: A=8.0908, B=2088.9, C=203.5

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: 100 bbl New EG Tank

City: Salt Lake City

State: Utah

Company: QEP Resources

Type of Tank: Vertical Fixed Roof Tank

Description: QEP Resources Wonsits Valley Compressor Station 100 bbl Tank Ethlylene Glycol

Tank Dimensions

 Shell Height (ff):
 8.00

 Diameter (ft):
 9.50

 Liquid Height (ft):
 8.00

 Avg. Liquid Height (ft):
 4.00

 Volume (gallons):
 4,241.90

 Turnovers:
 2.50

 Net Throughput(gal/yr):
 10,604.75

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: White/White Shell Condition Good Roof Color/Shade: White/White Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03
Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

RVP @ 100F [psia] 70.13 9.26 9.26 Spec. Gravity @ 100F 0.666 0.684 0.684

	al HAPs	3.170 133.833	0.724	0.1		0.036		
	al HC		30.555	6.6		1.528		
	s, C2+ s, C3+	91.912 72.053	20.984 16.450	4.5 3.6		1.049 0.823		
VOC	.s, C3+	72.053	10.450	3.0	03	0.623		
Unc	ontrolled Recover	7. V99901700	(23:55:25:25:25)					
	Vapor	9.5300	[MSCFD]					
	HC Vapor	9.4300	[MSCFD]	45				
	GOR	158.83	[SCF/bbl]					
	Emission Composit	ion						
No	Component	Uncontrolled	Uncontrol		trolled	Controlle	d	
		[ton/yr]	[lb/hr]		n/yr]	[lb/hr]		
1	H2S	0.000	0.000	0.0		0.000		
2	02	0.000	0.000	0.0		0.000		
3	CO2	1.830	0.418	1.8		0.418		
4	N2	0.200	0.046	0.2		0.046		
5	C1	41.921	9.571	2.0		0.479		
6	C2	19.859	4.534	0.9		0.227		
7	C3	25.171	5.747	1.2		0.287		
8	i-C4	9.094	2.076	0.4		0.104		
9	n-C4	14.494	3.309	0.7		0.165		
10	i-C5	6.809	1.555	0.3		0.078		
11	n-C5	5.263	1.202	0.2		0.060		
12	C6	2.581	0.589	0.1		0.029		
13	C7	4.627	1.056	0.2		0.053		
14	C8	0.658	0.150	0.0		0.008		
15	C9	0.144	0.033	0.0		0.002		
16	C10+	0.039	0.009	0.0		0.000		
17	Benzene	0.538	0.123	0.0		0.006		
18	Toluene	0.427	0.097	0.0		0.005		
19	E-Benzene	0.011	0.003	0.0		0.000		
20	Xylenes	0.109	0.025	0.0		0.001		
21	n-C6 224Trimethylp	1.767	0.403	0.0		0.020		
22	Total	0.320 135.862	0.073 31.019	0.0 6.7		0.004 1.551		
	Stream Data Component	MW	LP Oil		l Sale Oil	Flash Gas	WES Gas	Total Emissions
	Component	****	mol %	mol %	mol %	mol %	mol %	mol %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.1648	0.0141	0.0141	0.9062	0.0000	0.9062
4	N2	28.01	0.0264	0.0002	0.0002	0.1553	0.0000	0.1553
5	C1	16.04	9.8520	0.2804	0.2804	56.9557	0.0000	56.9557
6	C2	30.07	2.8039	0.4485	0.4485	14.3951	0.0000	14.3951
7	C3	44.10	3.3353	1.4848	1.4848	12.4420	0.0000	12.4420
8	i-C4	58.12	1.5152	1.1301	1.1301	3.4103	0.0000	3.4103
9	n-C4	58.12	3.1131	2.6412	2.6412	5.4355	0.0000	5.4355
	i-C5	72.15	2.6843	2.8118	2.8118	2.0569	0.0000	2.0569
11	n-C5	72.15	2.7802	3.0220	3.0220	1.5900	0.0000	1.5900
12	C6	86.16	3.6946	4.3092	4.3092	0.6697	0.0000	0.6697
13	C7	100.20	18.4092	21.9386	21.9386	1.0398	0.0000	1.0398
14	C8	114.23	7.8836	9.4593	9.4593	0.1292	0.0000	0.1292
15	C9	128.28	4.9105	5.9031	5.9031	0.0255	0.0000	0.0255
16	C10+	174.06	27.4103	32.9789	32.9789	0.0049	0.0000	0.0049
17	Benzene	78.11	1.1333	1.3331	1.3331	0.1501	0.0000	0.1501
18	Toluene	92.13	2.9510	3.5301	3.5301	0.1011	0.0000	0.1011
19	E-Benzene	106.17	0.2203	0.2646	0.2646	0.0023	0.0000	0.0023
20	Xylenes	106.17	2.5216	3.0294	3.0294	0.0225	0.0000	0.0225
21	n-C6	86.18	3.2163	3.7790	3.7790	0.4468	0.0000	0.4468
22	224Trimethylp	114.24	1.3747	1.6416	1.6416	0.0611	0.0000	0.0611
	MW		104.91	120.21	120.21	29.61	0.00	29.61
	Stream Mole Rati	0	1.0000	0.8311	0.8311	0.1689	0.0000	0.1689
	Heating Value	[BTU/SCF]				1710.12	0.00	1710.12
	Heating Value Gas Gravity	[BTU/SCF] [Gas/Air]				1710.12 1.02	0.00	1710.12 1.02

```
************
* Project Setup Information
**********************
Calculation Method : RVP Distillation
Control Efficiency : 95.0%
Known Separator
Project File : Z:\458481_QEP_Part_71_Applications\Wonsits\Emission Calcs\Wonsits 60 bbl Tank Run 20
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                : Uintah Basin
Well Name
Well ID
                 : QEP - Wonsits Valley Compressor Station
                 : Wonsits Valley - 8/5/11
Date
                 : 2012.09.07
* Data Input
: 200.00[psig]
Separator Pressure
Separator Temperature : 200.00[F]
Separator Temperature : 60.00[F]
Ambient Pressure : 12.00[psia]
Ambient Temperature : 60.00[F]
                : 0.7537
C10+ SG
C10+ MW
                : 174.056
-- Low Pressure Oil ------
 No. Component
                    mol %
                     0.0000
  1
      H2S
      02
                    0.0000
  2
  3
     CO2
                    0.1648
      N2
  4
                     0.0264
  5
      C1
                     9.8520
  6
      C2
                     2.8039
     C3
  7
                     3.3353
     i-C4
n-C4
  8
                    1.5152
3.1131
  9
  10
    i-C5
                    2.6843
                    2.7802
  11
     n-C5
  12
      C6
                     3.6946
  13
      C7
                   18.4092
      C8
                    7.8836
  14
  15
      C9
                     4.9105
      C10+
  16
                   27.4103
  17
      Benzene
                    1.1333
 18
     Toluene
                    2.9510
     E-Benzene
Xylenes
  19
                    0.2203
                    2.5216
 20
     n-C6
  21
  22
      224Trimethylp
                    1.3747
-- Sales Oil ------
Production Rate : 60[bbl/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 68.6
Reid Vapor Pressure : 10.58[psia]
* Calculation Results
-- Emission Summary ------
             Uncontrolled Uncontrolled Controlled Controlled
             [ton/yr] [lb/hr] [ton/yr] [lb/hr]
```

	(vol%)	(lb/hr)
Methane	3.51e+001	1.31e-001
Ethane	1.41e+001	9.83e-002
Propane	1.50e+001	1.53e-001
Isobutane	4.34e+000	5.85e-002
n-Butane	7.44e+000	1.00e-001
Isopentane	2.09e+000	3.50e-002
n-Pentane	2.17e+000	3.63e-002
n-Hexane	8.90e-001	1.78e-002
Cyclohexane	2.34e+000	4.56e-002
Other Hexanes		2.62e-002
Heptanes	7.53e-001	1.75e-002
Methylcyclohexane		4.17e-002
2,2,4-Trimethylpentane		
	7.77e+000	
	4.32e+000	
Ethylbenzene	4.30e-002	1.06e-003
	4.50e-001	
C8+ Heavies		
Total Components	100.00	1.01e+000

...

Page: 12

Propane 3.72e-001 3.27e-001 Isobutane 3.02e-001 2.65e-001 n-Butane 7.65e-001 6.72e-001 Isopentane 7.61e-001 6.69e-001 n-Pentane 7.80e-001 6.86e-001 n-Hexane 1.17e+000 1.03e+000 Cyclohexane 4.32e+000 3.80e+000 Other Hexanes 1.18e+000 1.03e+000 Heptanes 3.39e+000 2.97e+000 Methylcyclohexane 8.34e+000 7.33e+000 2,2,4-Trimethylpentane 1.27e-001 1.12e-001 Benzene 1.62e+001 1.43e+001 Toluene 3.30e+001 2.90e+001 Ethylbenzene 1.33e+000 1.17e+000 Xylenes 1.64e+001 1.44e+001 C8+ Heavies 1.14e+001 1.00e+001 Total Components 100.00 8.79e+001

CONDENSER VENT STREAM

Tomporature. 100 00 deg E

Temperature: 100.00 deg. F Pressure: 12.00 psia Flow Rate: 2.46e+002 scfh

Component Conc. Loading (vol%) (lb/hr) Water 7.99e+000 9.32e-001 Carbon Dioxide 2.03e+001 5.79e+000 Nitrogen 8.62e-002 1.56e-002 Methane 2.52e+001 2.61e+000 Ethane 1.01e+001 1.97e+000 Propane 1.07e+001 3.06e+000 Isobutane 3.11e+000 1.17e+000 n-Butane 5.33e+000 2.00e+000 Isopentane 1.50e+000 6.99e-001 n-Pentane 1.55e+000 7.25e-001 n-Hexane 6.37e-001 3.56e-001 Cyclohexane 1.67e+000 9.11e-001 Other Hexanes 9.39e-001 5.24e-001 Heptanes 5.39e-001 3.50e-001 Methylcyclohexane 1.31e+000 8.34e-001 2,2,4-Trimethylpentane 1.81e-002 1.34e-002 Benzene 5.56e+000 2.81e+000 Toluene 3.09e+000 1.84e+000 Ethylbenzene 3.08e-002 2.12e-002 Xylenes 3.23e-001 2.22e-001 C8+ Heavies 2.92e-003 3.22e-003 ------Total Components 100.00 2.69e+001

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 8.79e+000 scfh

Component Conc. Loading

1.39e+000	1.11e-001	n-Hexane
4.71e+000	3.85e-001	Cyclohexane
1.56e+000	1.24e-001	Other Hexanes
3.32e+000	2.28e-001	Heptanes
8.17e+000	5.72e-001	Methylcyclohexane
1.25e-001	7.55e-003	2,2,4-Trimethylpentane
	1.51e+000	
3.09e+001	2.31e+000	Toluene
1.19e+000	7.72e-002	Ethylbenzene
1.46e+001	9.47e-001	Xylenes
1.00e+001	4.05e-001	C8+ Heavies
3.48e+002	100.00	Total Components

CONDENSER PRODUCED WATER STREAM

Temperature: 100.00 deg. F Flow Rate: 4.67e-001 gpm

Component		Loading (lb/hr)	(ppm)
Water	9.99e+001	2.33e+002	999106.
Carbon Dioxide			
		2.61e-006	
	3.77e-004		4.
	3.42e-004		3.
Propane	4.65e-004	1.09e-003	5.
	9.94e-005		1.
n-Butane	2.32e-004	5.41e-004	2.
Isopentane	5.87e-005	1.37e-004	1.
n-Pentane	6.63e-005	1.55e-004	1.
n-Hexane	2.81e-005	6.57e-005	0.
Cyclohexane	4.35e-004	1.02e-003	4.
Other Hexanes	3.29e-005	7.68e-005	0.
	1.58e-005		0.
Methylcyclohexane	1.94e-004	4.52e-004	2.
2,2,4-Trimethylpentane	3.97e-007	9.28e-007	0.
Benzene	4.20e-002	9.82e-002	420.
Toluene	2.35e-002	5.49e-002	235.
Ethylbenzene	2.11e-004	4.92e-004	2.
Xylenes	3.13e-003	7.32e-003	31.
C8+ Heavies	8.18e-008	1.91e-007	0.
Total Components	100.00	2.34e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 100.00 deg. F
Flow Rate: 2.07e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Water	4.13e-002	3.63e-002
Carbon Dioxide	7.04e-002	6.18e-002
Nitrogen	1.10e-004	9.71e-005
Methane	1.01e-002	8.85e-003
Ethane	4.48e-002	3.94e-002

Page: 10

Toluene 3.21e-001 3.36e+001 Ethylbenzene 1.27e-002 1.33e+000

Xylenes 1.60e-001 1.68e+001 C8+ Heavies 1.10e-001 1.15e+001

------Total Components 100.00 1.05e+004

FLASH GAS EMISSIONS

Flow Rate: 3.14e+003 scfh

Control Method: Combustion Device

Control Efficiency: 95.00

Component	Conc. (vol%)	
Water	6.03e+001	8 98e+001
Carbon Dioxide		
	6.90e-002	
	9.78e-001	
	1.30e-001	
Propane	7.24e-002	2.64e-001
Isobutane	1.69e-002	8.13e-002
n-Butane	2.50e-002	1.20e-001
Isopentane	9.51e-003	5.68e-002
n-Pentane	8.18e-003	4.88e-002
n-Hexane	4.11e-003	2.93e-002
Cyclohexane		
Other Hexanes		
	4.61e-003	
Methylcyclohexane	4.64e-003	3.76e-002
2,2,4-Trimethylpentane	2.87e-004	2.71e-003
Benzene	2.40e-003	1.55e-002
Toluene	2.59e-003	1.97e-002
Ethylbenzene	5.48e-005	4.81e-004
Xylenes	4.78e-004	4.20e-003
C8+ Heavies	2.38e-003	3.35e-002
Total Components	100.00	2.32e+002

REGENERATOR OVERHEADS STREAM

---------Temperature: 212.00 deg. F Pressure: 14.70 psia

Flow Rate: 5.51e+003 scfh

Component	(vol%)	(lb/hr)	
Water	8.95e+001	2.34e+002	
Carbon Dioxide	9.22e-001	5.90e+000	
Nitrogen	3.87e-003	1.57e-002	
Methane	1.12e+000	2.62e+000	
Ethane	4.59e-001	2.01e+000	
Propane	5.28e-001	3.39e+000	
Isobutane	1.70e-001	1.44e+000	
n-Butane	3.17e-001	2.68e+000	
Isopentane	1.31e-001	1.37e+000	
n-Pentane	1.35e-001	1.41e+000	

FLASH TANK OFF GAS STREAM

Temperature: 165.00 deg. F Pressure: 99.70 psia Flow Rate: 8.60e+002 scfh

Conc. Loading (vol%) (lb/hr) Component Water 5.83e-001 2.38e-001 Carbon Dioxide 6.39e+000 6.37e+000 Nitrogen 2.52e-001 1.60e-001 Methane 7.14e+001 2.60e+001 Ethane 9.47e+000 6.45e+000 Propane 5.29e+000 5.28e+000 Isobutane 1.23e+000 1.63e+000 n-Butane 1.82e+000 2.40e+000 Isopentane 6.94e-001 1.14e+000 n-Pentane 5.97e-001 9.76e-001 n-Hexane 3.00e-001 5.85e-001 Cyclohexane 2.72e-001 5.18e-001 Other Hexanes 4.30e-001 8.40e-001 Heptanes 3.36e-001 7.63e-001 Methylcyclohexane 3.38e-001 7.53e-001 2,2,4-Trimethylpentane 2.10e-002 5.43e-002 Benzene 1.75e-001 3.11e-001 Toluene 1.89e-001 3.94e-001 Ethylbenzene 4.00e-003 9.62e-003 Xylenes 3.49e-002 8.39e-002 C8+ Heavies 1.73e-001 6.70e-001 Total Components 100.00 5.56e+001

FLASH TANK GLYCOL STREAM

Temperature: 165.00 deg. F Flow Rate: 1.87e+001 gpm

Conc. Loading Component (wt%) (lb/hr) TEG 9.47e+001 9.91e+003 Water 4.17e+000 4.37e+002 Carbon Dioxide 5.63e-002 5.90e+000 Nitrogen 1.50e-004 1.57e-002 Methane 2.51e-002 2.62e+000 Ethane 1.92e-002 2.01e+000 Propane 3.24e-002 3.39e+000 Isobutane 1.37e-002 1.44e+000 n-Butane 2.56e-002 2.68e+000 Isopentane 1.32e-002 1.38e+000 n-Pentane 1.36e-002 1.42e+000 n-Hexane 1.33e-002 1.40e+000 Cyclohexane 4.67e-002 4.88e+000 Other Hexanes 1.51e-002 1.58e+000 Heptanes 3.20e-002 3.35e+000 Methylcyclohexane 8.16e-002 8.54e+000 2,2,4-Trimethylpentane 1.22e-003 1.28e-001 Benzene 1.73e-001 1.81e+001

Page: 8

TEG 9.79e+001 9.91e+003 Water 2.00e+000 2.02e+002 Carbon Dioxide 1.21e-011 1.23e-009 Nitrogen 1.73e-013 1.75e-011 Methane 9.49e-018 9.60e-016 Ethane 3.95e-008 3.99e-006 Propane 3.49e-009 3.53e-007 Isobutane 9.07e-010 9.18e-008 n-Butane 1.24e-009 1.26e-007 Isopentane 1.24e-004 1.26e-002 n-Pentane 1.19e-004 1.20e-002 n-Hexane 9.79e-005 9.91e-003 Cyclohexane 1.71e-003 1.73e-001 Other Hexanes 2.39e-004 2.42e-002 Heptanes 2.03e-004 2.05e-002 Methylcyclohexane 3.67e-003 3.72e-001 2,2,4-Trimethylpentane 2.70e-005 2.74e-003 Benzene 9.09e-003 9.20e-001 Toluene 2.65e-002 2.68e+000 Ethylbenzene 1.38e-003 1.40e-001 Xylenes 2.16e-002 2.18e+000 C8+ Heavies 1.44e-002 1.46e+000 Total Components 100.00 1.01e+004

RICH GLYCOL STREAM

Temperature: 98.00 deg. F Pressure: 914.70 psia Flow Rate: 1.88e+001 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)	
TEC	9.42e+001	0.010.003	
	4.15e+000		
Carbon Dioxide			
	1.67e-001		
	2.72e-001		
Hechane	2.726-001	2.000+001	
Ethane	8.04e-002	8.46e+000	
Propane	8.24e-002	8.67e+000	
	2.91e-002		
n-Butane	4.83e-002	5.08e+000	
Isopentane	2.39e-002	2.52e+000	
	2.28e-002		
	1.88e-002		
Cyclohexane			
Other Hexanes			
Heptanes	3.91e-002	4.11e+000	
Methylcyclohexane			
2,2,4-Trimethylpentane			
	1.75e-001		
	3.23e-001		
Ethylbenzene	1.27e-002	1.34e+000	
Yvlenes	1.60e-001	1 69e+001	
C8+ Heavies			
Total Components	100.00	1.05e+004	
1			

			Page
	4.10e-001 5.21e-001		
Isopentane	2.11e-001	1.68e+003	
n-Pentane	1.58e-001	1.25e+003	
n-Hexane	6.85e-002	6.49e+002	
Cyclohexane Other Hexanes	4.21e-002	3.90e+002	
Heptanes	6.93e-001	7.64e+002	
Methylcyclohexane	5.81e-002	6.28e+002	
2,2,4-Trimethylpentane			
	1.74e-002		
Ethylbenzene	1.88e-002 4.99e-004		
	4.49e-003		
C8+ Heavies	3.37e-002	6.31e+002	
Total Components	100.00	2.04e+005	
DRY GAS STREAM			
Temperature: 98.00 deg. F Pressure: 914.70 psia			
Pressure: 914.70 psia Flow Rate: 4.17e+006 scfh			
110% Race. 4.176+000 Belli			
Component		Loading (lb/hr)	
Water Carbon Dioxide	7.14e-003		
Nitrogen	2.83e-001	8.72e+002	
	9.01e+001		
Ethane	4.71e+000	1.560+004	
	2.07e+000 4.10e-001		
	5.21e-001		
Isopentane	2.11e-001	1.67e+003	
n-Pentane	1.58e-001	1.25e+003	
	6.84e-002		
Cyclohexane Other Hexanes	1.08e-001	1.02e+003	
Heptanes	6.90e-002	7.60e+002	
Methylcyclohexane	5.74e-002	6.19e+002	
2,2,4-Trimethylpentane			
	1.54e-002 1.57e-002		
Ethylbenzene	3.97e-004	4.63e+000	
Xylenes	3.24e-003	3.78e+001	
C8+ Heavies	3.31e-002	6.20e+002	
Total Components	100.00	2.04e+005	
•			
LEAN GLYCOL STREAM			
Temperature: 98.00 deg. F Flow Rate: 1.80e+001 gpm			
Component	Corc	Loading	
Component	Conc. (wt%)	Loading (lb/hr)	

		Page:	6
Methylcyclohexane	91.90%	8.10%	
2,2,4-Trimethylpentane	70.25%	29.75%	
Benzene	98.31%	1.69%	
Toluene	98.84%	1.16%	
Ethylbenzene	99.28%	0.72%	
Xylenes	99.50%	0.50%	
C8+ Heavies	94.49%	5.51%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	46.35%	53.65%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.91%	99.09%
n-Pentane	0.84%	99.16%
n-Hexane	0.71%	99.29%
Cyclohexane	3.54%	96.46%
Other Hexanes	1.53%	98.47%
Heptanes	0.61%	99.39%
Methylcyclohexane	4.35%	95.65%
2,2,4-Trimethylpentane	2.13%	97.87%
Benzene	5.09%	94.91%
Toluene	8.00%	92.00%
Ethylbenzene	10.48%	89.52%
Xylenes	12.99%	87.01%
C8+ Heavies	12.71%	87.29%

STREAM REPORTS:

WET GAS STREAM

Temperature: 98.00 deg. F Pressure: 914.70 psia Flow Rate: 4.17e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Water	1.26e-001	2.49e+002
Carbon Dioxide	1.08e+000	5.22e+003
Nitrogen	2.83e-001	8.72e+002
Methane	9.00e+001	1.59e+005
Ethane	4.71e+000	1.56e+004

Propane 2.06e+000 1.00e+004

Calculated Absorber Stages: 1.46
Specified Dry Gas Dew Point: 3.39 lbs. H2O/MMSCF
Temperature: 98.0 deg. F
900.0 psig
Dry Gas Flow Rate: 100.0000 MMSCF/day
Glycol Losses with Dry Gas: 1.2391 lb/hr
Wet Gas Water Content: Saturated
Calculated Wet Gas Water Content: 59.59 lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio: 4.61 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5.68%	94.32%
Carbon Dioxide	99.76%	0.24%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.95%	0.05%
Echane	99.956	0.05%
Propane	99.91%	0.09%
Isobutane	99.88%	0.12%
n-Butane	99.85%	0.15%
Isopentane	99.85%	0.15%
n-Pentane	99.81%	0.19%
n-Hexane	99.70%	0.30%
Cyclohexane	98.66%	1.34%
Other Hexanes	99.77%	0.23%
Heptanes	99.46%	0.54%
Methylcyclohexane	98.58%	1.42%
2,2,4-Trimethylpentane	99.77%	0.23%
Benzene	88.29%	11.71%
Toluene	83.56%	16.44%
Ethylbenzene	79.40%	20.60%
Xylenes	71.99%	28.01%
C8+ Heavies	98.30%	1.70%

FLASH TANK

Flash Control: Combustion device

Flash Control Efficiency: 95.00 %
Flash Temperature: 165.0 deg. F
Flash Pressure: 85.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.95%	0.05%
Carbon Dioxide	48.06%	51.94%
Nitrogen	8.96%	91.04%
Methane	9.18%	90.82%
Ethane	23.71%	76.29%
Propane	39.06%	60.94%
Isobutane	46.89%	53.11%
n-Butane	52.70%	47.30%
Isopentane	54.89%	45.11%
n-Pentane	59.32%	40.68%
n-Hexane	70.45%	29.55%
Cyclohexane	90.40%	9.60%
Other Hexanes	65.32%	34.68%
Heptanes	81.42%	18.58%

				Page:	4
	n-Pentane	10.4560	0.3726		96.44
	n-Hexane	8.6353	0.2061		97.61
Су	clohexane	22.9007	0.3132		98.63
Othe	r Hexanes	10.5072	0.2988		97.16
	Heptanes	17.9057	0.2438		98.64
Methylcy	clohexane	39.0675	0.3475		99.11
2,2,4-Trimeth	ylpentane	0.7870	0.0148		98.12
	Benzene	76.5612	0.6840		99.11
	Toluene	137.0442	0.4900		99.64
Eth	ylbenzene	5.2614	0.0067		99.87
	Xylenes	64.3721	0.0669		99.90
C8	+ Heavies	46.8456	0.1474		99.69
Total	Emissions	687.1317	15.0966		97.80
Total Hydrocarbon	Emissions	687.1317	15.0966		97.80
Total VOC	Emissions	524.9254	6.9972		98.67
Total HAP	Emissions	292.6612	1.4686		99.50
Total BTEX	Emissions	283.2389	1.2477		99.56

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature: 100.00 deg. F
Condenser Pressure: 12.00 psia
Condenser Duty: 8.41e-002 MM BTU/hr
Hydrocarbon Recovery: 7.08 bbls/day
Produced Water: 16.01 bbls/day
Ambient Temperature: 60.00 deg. F
Excess Oxygen: 5.00 %
Combustion Efficiency: 95.00 %
Supplemental Fuel Requirement: 8.41e-002 MM BTU/hr

Supplemental Fuel Requirement: 8.41e-002 MM BTU/hr

Emitted	Destroyed
4.98%	95.02%
4.90%	95.10%
4.52%	95.48%
4.07%	95.93%
3.74%	96.26%
2.56%	97.44%
2.57%	97.43%
1.28%	98.72%
0.97%	99.03%
1.68%	98.32%
0.53%	99.47%
0.51%	99.49%
0.53%	99.47%
0.82%	99.18%
0.30%	99.70%
0.09%	99.91%
0.08%	99.92%
0.00%	100.00%
	4.98% 4.90% 4.52% 4.07% 3.74% 2.56% 2.57% 1.28% 0.97% 1.68% 0.53% 0.53% 0.53% 0.53% 0.53% 0.53% 0.53%

	Oth	er Hexanes	0.8404	20.169	Page: 3 3.6808
	Methylc	Heptanes yclohexane	0.7635 0.7529	18.324 18.070	3.3441 3.2978
	2,2,4-Trimet		0.0543	1.303	0.2377
		Benzene Toluene	0.3105	7.452 9.463	1.3600 1.7270
		nylbenzene Xylenes	0.0096 0.0839	0.231 2.014	0.0422 0.3675
	C	8+ Heavies	0.6697	16.073	2.9334
	Total	Emissions	48.8107	1171.456	213.7908
Total	Hydrocarbon Total VOC	Emissions Emissions	48.8107 16.4047	1171.456 393.712	213.7908 71.8525
	Total HAP Total BTEX	Emissions Emissions	1.4381 0.7983	34.514 19.160	6.2988 3.4968

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.4282	34.277	6.2556
Ethane	0.4210	10.103	1.8438
Propane	0.4170	10.009	1.8266
Isobutane	0.1398	3.355	0.6123
n-Butane	0.2203	5.286	0.9647
Isopentane	0.0917	2.201	0.4018
n-Pentane	0.0851	2.042	0.3726
n-Hexane	0.0470	1.129	0.2061
Cyclohexane	0.0715	1.716	0.3132
Other Hexanes	0.0682	1.637	0.2988
Heptanes	0.0557	1.336	0.2438
Methylcyclohexane	0.0793	1.904	0.3475
2,2,4-Trimethylpentane	0.0034	0.081	0.0148
Benzene	0.1562	3.748	0.6840
Toluene	0.1119	2.685	0.4900
Ethylbenzene	0.0015	0.037	0.0067
Xylenes	0.0153	0.367	0.0669
C8+ Heavies	0.0336	0.808	0.1474
Total Emissions	3.4467	82.721	15.0966
Total Hydrocarbon Emissions	3.4467	82.721	15.0966
Total VOC Emissions	1.5975	38.341	6.9972
Total HAP Emissions	0.3353	8.047	1.4686
Total BTEX Emissions	0.2849	6.837	1.2477

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	125.1548	6.2556	95.00
Ethane	37.0515	1.8438	95.02
Propane	37.9675	1.8266	95.19
Isobutane	13.4090	0.6123	95.43
n-Butane	22.2396	0.9647	95.66
Isopentane	10.9655	0.4018	96.34

w. e			Page: 2	
Other Hexanes	1.5585	37.405	6.8264	NO COLUMN
Heptanes	3.3245	79.789	14.5615	
Methylcyclohexane	8.1666	195.998	35.7697	
2,2,4-Trimethylpentane	0.1254	3.010	0.5493	
Benzene	17.1692	412.061	75.2011	
Toluene	30.8943	741.464	135.3172	
Ethylbenzene	1.1916	28.599	5.2192	
Xylenes	14.6129	350.710	64.0046	
C8+ Heavies	10.0256	240.615	43.9123	
Total Emissions	108.0687	2502.640	452 2400	
TOTAL EMISSIONS	108.0687	2593.649	473.3409	
Total Hydrocarbon Emissions	108.0687	2593.649	473.3409	
Total VOC Emissions	103.4413	2482.592	453.0730	
Total HAP Emissions	65.3796	1569.109	286.3625	
Total BTEX Emissions	63.8681	1532.833	279.7421	

FLASH GAS EMISSIONS

r	tons/yr	lbs/day	lbs/hr	Component
835	5.6835	31.142	1.2976	Methane
	1.4134	7.745	0.3227	Ethane
	1.1569	6.339	0.2641	Propane
	0.3561	1.951	0.0813	Isobutane
	0.5260	2.882	0.1201	n-Butane
2486	0.2486	1.362	0.0568	Isopentane
	0.2137	1.171	0.0488	n-Pentane
	0.1282	0.703	0.0293	n-Hexane
	0.1135	0.622	0.0259	Cyclohexane
	0.1840	1.008	0.0420	Other Hexanes
672	0.1672	0.916	0.0382	Heptanes
	0.1649	0.904	0.0376	Methylcyclohexane
	0.0119	0.065	0.0027	2,2,4-Trimethylpentane
	0.0680	0.373	0.0155	Benzene
864	0.0864	0.473	0.0197	Toluene
021	0.0021	0.012	0.0005	Ethylbenzene
184	0.0184	0.101	0.0042	Xylenes
	0.1467	0.804	0.0335	C8+ Heavies
895	10.6895	58.573	2.4405	Total Emissions
895	10.6895	58.573	2.4405	Total Hydrocarbon Emissions
	3.5926	19.686	0.8202	Total VOC Emissions
	0.3149	1.726	0.0719	Total HAP Emissions
	0.1748	0.958	0.0399	Total BTEX Emissions

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	25.9520	622.849	113.6699
Ethane	6.4540	154.895	28.2684
Propane	5.2829	126.789	23.1390
Isobutane	1.6260	39.023	7.1217
n-Butane	2.4017	57.640	10.5193
Isopentane	1.1351	27.242	4.9717
n-Pentane	0.9760	23.424	4.2749
n-Hexane	0.5855	14.051	2.5643
Cyclohexane	0.5185	12.444	2.2710

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: QEP - Wonsits Valley CS File Name: \\gecko\ebg\458481_QEP_Part_71_Applications\Wonsits\Emission Calcs\Wonsits_100

scfd TEG Dehy 2012.ddf

Date: September 11, 2012

DESCRIPTION:

Description: 100 MMscf/d TEG Dehydration Unit

Sample Date: 08/31/2012

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1306	3.135	0.5721
Ethane	0.0983	2.358	0.4304
Propane	0.1529		0.6696
Isobutane	0.0585	1.404	0.2562
n-Butane	0.1002	2.404	0.4387
Isopentane	0.0350	0.839	0.1532
n-Pentane	0.0363	0.871	0.1589
n-Hexane	0.0178	0.427	0.0779
Cyclohexane	0.0456	1.094	0.1996
Other Hexanes	0.0262	0.629	0.1147
Heptanes	0.0175	0.420	0.0766
Methylcyclohexane	0.0417	1.001	0.1826
2,2,4-Trimethylpentane	0.0007	0.016	0.0029
Benzene	0.1406	3.375	0.6160
Toluene	0.0922	2.212	0.4037
Ethylbenzene	0.0011	0.025	0.0046
Xylenes	0.0111	0.266	0.0485
C8+ Heavies	0.0002	0.004	0.0007
Total Emissions	1.0062	24.148	4.4070
Total Hydrocarbon Emissions	1.0062	24.148	4.4070
Total VOC Emissions	0.7773	18.655	3.4045
Total HAP Emissions	0.2634	6.321	1.1537
Total BTEX Emissions	0.2449	5.879	1.0729

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	2.6221	62.931	11,4848
Ethane	2.0053	48.126	8.7831
Propane	3.3855	81.252	14.8285
Isobutane	1.4355	34.451	6.2873
n-Butane	2.6759	64.220	11.7202
Isopentane	1.3684	32.843	5.9938
n-Pentane	1.4112	33.869	6.1811
n-Hexane	1.3861	33.266	6.0711
Cyclohexane	4.7100	113.040	20.6297

QEP Field Services Company

Wonsits Valley Compressor Station

Pilot Flow Calculator - Cimarron Combustor

Cubi	oic Feet per Hour Flow Capacity @ 10 psig					
	Natural Gas	Natural Gas Propane				
SG =	0.6	1.5	2			
Drill Size #70	21	13.4	11.6	scf/hr		
(Discharge = 1.0) Calculated Flow Capacity =	18.45	11.77	10.19	scf/hr		
Adjusted Flow Capacity for Discharge Coefficient =	13.84	8.83	7.64	scf/hr		
Calculated Total Flow w/Input Discharge Coefficient =	13.84	8.83	7.64	scf/hr		
	0.33	0.21	0.18	MSCFD		
	15,622	22,709	24,650	BTU/hr		

	SG =	0.6	13.84	scf/hr
In	Input Flow Pressure		7	psig
	Input Total Jets		1	orifices
Input Disc	charge (Coefficient	0.75	

SECTION IV

PERFORMANCE

The John Zink Vapor Combustion Unit will combust the hydrocarbon vapors from the incoming air/hydrocarbon vapor mixture in order to comply with guaranteed emission limits as stated below.

SUMMARY

GUARANTEED HYDROCARBON EMISSIONS LEVEL (See Section VI for Performance Guarantee)

95% Destruction Efficiency

ESTIMATED SYSTEM PRESSURE DROPS

10 Inches W. C. estimated at maximum inlet flow conditions. (See Section II, Design Basis)

Pressure drop through 4" burner at 5 scfm is 0.312 inch W.C. Pressure drop through 4" burner at 150 scfm is 4.9 inch W.C.

UTILITY REQUIREMENTS

Pilot Gas 21 SCFH Propane @ 4 PSIG or 54 SCFH of Natural Gas @ 7 PSIG per pilot

Assist Gas Will be provided by customr. Minimum flowrate will be 5 scfm.

Instrument Air . . . None

G3616

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Wonsits Valley CS (C207)

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER WATER INLET (%): JACKET WATER OUTLET (%): ASPIRATION: COOLING SYSTEM: IGNITION SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx):

1000 9:1 130 190 TA JW, OC+AC CIS/ADEM3 DRY

Low Emission

FUEL SYSTEM: FUEL:

SITE CONDITIONS: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(%): STANDARD RATED POWER:

WITH AIR FUEL RATIO CONTROL Gas Analysis 42.8-47.0 61.2 1009 6590

61 4735 bhp@1000rpm

GAV

				MAXIMUM RATING		TING AT M	deliberational deliberation during
RATING		NOTES	LOAD	100%	100%	75%	52%
ENGINE POWER	(WITHOUT FAN)	(1)	bhp	4686	4554	3416	2368
INLET AIR TEMPERATURE			٩F	32	61	61	61
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(2)	Btu/bhp-hr	6749	6781	7106	7694
FUEL CONSUMPTION (HHV)		(2)	Btu/bhp-hr	7469	7505	7865	8516
AIR FLOW (77°F, 14.7 psia)	(WET)	(3)(4)	scfm	11840	11537	8910	6347
AIR FLOW	(WET)	(3)(4)	lb/hr	52498	51154	39507	28144
INLET MANIFOLD PRESSURE	1	(5)	in Hg(abs)	71.3	69.4	53.6	39.6
EXHAUST TEMPERATURE - ENGINE OUTLET		(6)	٩F	878	883	927	996
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(7)(4)	ft3/min	31382	30689	24504	18366
EXHAUST GAS MASS FLOW	(WET)	(7)(4)	lb/hr	54024	52644	40678	29022
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(8)(9)	g/bhp-hr	0.70	0.70	0.70	0.70
CO		(8)(9)	g/bhp-hr	2.50	2.50	2.50	2.50
THC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	6.01	6.04	6.28	6.49
NMHC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	1.26	1.26	1.31	1.36
NMNEHC (VOCs) (mol. wt. of 15.84)		(8)(9)(10)	g/bhp-hr	0.76	0.76	0.79	0.82
HCHO (Formaldehyde)		(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2		(8)(9)	g/bhp-hr	438	440	461	500
EXHAUST OXYGEN		(8)(11)	% DRY	11.7	11.7	11.5	11.1
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(12)	Btu/min	48122	47753	41503	34027
HEAT REJ. TO ATMOSPHERE		(12)	Btu/min	18600	18566	17594	16699
HEAT REJ. TO LUBE OIL (OC)	1	(12)	Btu/min	23937	23949	23178	22771
HEAT REJ. TO AFTERCOOLER (AC)		(12)(13)	Btu/min	37441	37441	14954	3356
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW)		(14)	Btu/min	52935			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)		(13)(14)	Btu/min	68052			

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

Gas Compression

WVCS - Title V App

Wonsits Valley CS - Uintah County, Utah

QEP Field Services

Ryan Robins

Others

ryan.robins@qepres.com

303.405.6688

FUEL COMPOSITION					
HYDROCARBONS:	Mole or \	/olume %		FUEL:	WVCS Fuel Gas
Methane	CH4	90.297		FUEL PRESSURE RANGE (psig):	45 - 60
Ethane	C2H6	4.7038		FUEL WKI:	79.7
Propane	C3H8	1.981		I OLE VIII.	73.7
Iso-Butane	I-C4H10	0.4325		FUEL SLHV (BTU/ft3):	987.56
Normal Butane	N-C4H10			To the ACT	77-77 (4.6.27/2)
		0.5586		FUEL SLHV (MJ/Nm3):	38.83
Iso-Pentane	I-C5H12	0.2158			
Normal Pentane	N-C5H12	0.1673		FUEL LHV (BUT/ft3):	1005.05
Hexane	C6H14	0.1796		FUEL LHV (MJ/Nm3):	39.52
Heptane	C7H16	0.1436			
Ethene	C2H4	0		FUEL HHV (BUT/ft3):	1111.78
Propene	C3H6	0		FUEL HHV (MJ/Nm3):	43.72
NON-HYDROCARBONS:	SUM HYDROCARBONS	98.679		FUEL DENSITY (SG):	0.64
Nitrogen	N2	0.2881		Standard Conditions per ASTM D3588-91 [60°F	and 14 696nsial and ISO
Oxygen	02	0.2001		6976:1996-02-01[25, V(0;101.325)]	una 14.000palaj ana 100
Helium		0		Based on the fuel composition, supply pressure	and temperature, liquid
	He	-		hydrocarbons may be present in the fuel. No liqu	
Carbon Dioxide	CO2	0.965		allowed in the fuel. The fuel must not contain an	y liquid water. Dresser
Carbon Monoxide	co	0		Waukesha recommends both of the following: 1) Dew point of the fuel gas to be at least 20°F (11°C) below the measured
Hydrogen	H2	0		temperature of the gas at the inlet of the engine	
Water Vapor	H2O	0		A fuel filter separator to be used on all fuels e natural gas.	
	TOTAL FUEL	99.932		Refer to the 'Fuel and Lubrication' section of 'Te Dresser Waukesha Application Engineering Dep	partment for additional
111				information on fuels, or LHV and WKI ® calculat	ions.
FUEL CONTAMINANTS					
Total Sulfur Compounds		0	% volume	Total Sulfur Compounds	0 µg/BTU
Total Halogen as Cloride		0	% volume	Total Halogen as Cloride	0 µg/BTU
Total Ammonia		0	% volume	Total Ammonia	0 μg/BTU
Siloxanes				Total Siloxanes	0 µg/BTU
Tetramethyl silane		0	% volume		The same of the sa
Trimethyl silanol		0	% volume		
Hexamethyldisiloxane (L2)		0	% volume	Calculated fuel contaminant analysi	is will depend on the
Hexamethylcyclotrisiloxane (D3	3)	0	% volume	entered fuel composition and select	
Octamethyltrisiloxane (L3)		0	% volume	Cincipalition and select	ou ongine model.
Octamethylcyclotetrasiloxane (D4)	0	% volume		
Decamethyltetrasiloxane (L4)	U-1)	0			
	(DE)		% volume		
Decamethylcyclopentasiloxane		0	% volume		
Dodecamethylpentasiloxane (L		0	% volume		
Dodecamethylcyclohexasiloxar	ne (D6)	0	% volume		
Othora					

% volume

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

79.7

WVCS - Title V App

Wonsits Valley CS - Uintah County, Utah

QEP Field Services

Ryan Robins ryan.robins@qepres.com 303.405.6688 ENGINE SPEED (rpm): 1000 COOLING SYSTEM: JW, IC + OC DISPLACEMENT (in3): 13048 INTERCOOLER WATER INLET (°F): 130 JACKET WATER OUTLET (°F): COMPRESSION RATIO: 9:1 180 IGNITION SYSTEM: **ESM** JACKET WATER CAPACITY (gal): 100 EXHAUST MANIFOLD: Insulated Dry Type AUXILIARY WATER CAPACITY (gal): 30 LUBE OIL CAPACITY (gal): MAX. EXHAUST BACKPRESSURE (in. H2O): COMBUSTION: Lean Burn, Prechamber 220 ENGINE DRY WEIGHT (lbs): 50020 20 AIR/FUEL RATIO SETTING: **ESM** MAX. AIR INLET RESTRICTION (in. H2O): 15 NOx SELECTION (g/bhp-hr): 1.5 SITE CONDITIONS: WVCS Fuel Gas FUEL: ALTITUDE (ft): 6000 FUEL PRESSURE RANGE (psig): 45 - 60 MAXIMUM INLET AIR TEMPERATURE (°F): 77

CITE	SDECIEIC	TECHNICAL	DATA
SILE	SPECIFIC	IECHNICAL	DAIA

1,111.8

1,005.1

FUEL HHV (BTU/ft3):

FUEL LHV (BTU/ft3):

one of Edition Editional Balla		MAX RATING AT 100 °F	TEMPERATURE OF 77 °F		
POWER RATING	UNITS	AIR TEMP	100%	75%	54%
CONTINUOUS ENGINE POWER OVERLOAD	BHP % 2/24 hr	3100 0	3100 0	2325	1687
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHEEL based on no auxiliary engine driven equipment	% ВНР	38.3 3100	38.2 3100	36.6 2325	34.4 1687

FUEL WKI:

FUEL CONSUMPTION		The same			-	THE REAL PROPERTY.
FUEL CONSUMPTION (LHV)		BTU/BHP-hr	6653	6671	6962	7402
FUEL CONSUMPTION (HHV)		BTU/BHP-hr	7359	7380	7701	8188
FUEL FLOW	based on fuel analysis LHV	SCFM	359	360	282	217

HEAT REJECTION				100	S. O. William
JACKET WATER (JW)	BTU/hr x 1000	2232	2181	1937	1716
LUBE OIL (OC)	BTU/hr x 1000	753	745	723	734
INTERCOOLER (IC)	BTU/hr x 1000	2275	2016	1165	539
EXHAUST	BTU/hr x 1000	7577	7860	6361	5039
RADIATION	BTU/hr x 1000	300	392	398	409

EMISSIONS		1 1 12 12			
NOx (NO + NO2)	g/bhp-hr	1.5	1.5	1.5	1.5
CO	g/bhp-hr	2.2	2.2	2.5	2.6
THC	g/bhp-hr	3.6	3.6	4.0	4.2
NMHC	g/bhp-hr	0.80	0.80	0.86	0.91
NM, NEHC	g/bhp-hr	0.51	0.51	0.55	0.58
CO2	g/bhp-hr	415	416	434	462

AIR INTAKE / EXHAUST GAS							
INDUCTION AIR FLOW EXHAUST GAS MASS FLOW EXHAUST GAS FLOW EXHAUST TEMPERATURE	at exhaust temp, 14.5 psia	SCFM lb/hr ACFM °F	7703 33716 20052 893	8010 35058 20742 886	6032 26402 16108 928	4337 18981 12056 985	

HEAT EXHANGER SIZING		
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1000	2531
TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000	3434

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	430
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	15
AUX WATER PUMP MIN. DESIGN FLOW	GPM	410
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	17

All data provided per the condtions listed in the notes section on page three.

G3612

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Wonsits Valley CS (C202, C203, C204)

FUEL SYSTEM:

CATERPILLAR®

ENGINE SPEED (rpm):
COMPRESSION RATIO:
AFTERCOOLER WATER INLET (F):
JACKET WATER OUTLET (F):
ASPIRATION:
COOLING SYSTEM:
IGNITION SYSTEM:
EXHAUST MANIFOLD:
COMBUSTION:

COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): 1000 9:1 130 190

TA JW, OC+AC CIS/ADEM3 DRY Low Emission 0.7

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft):

MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

GAV WITH AIR FUEL RATIO CONTROL

Gas Analysis 42.8-47.0 61.2

> 1009 6590 61

3550 bhp@1000rpm

The state of the s				MAXIMUM RATING		TING AT M	
RATING		NOTES	LOAD	100%	100%	75%	52%
ENGINE POWER INLET AIR TEMPERATURE	(WITHOUT FAN)	(1)	bhp ℉	3505 32	3406 61	2554 61	1775 61
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(2)	Btu/bhp-hr	6776	6809	7124	7650
FUEL CONSUMPTION (HHV)		(2)	Btu/bhp-hr	7499	7535	7885	8467
AIR FLOW (77°F, 14.7 psia)	(WET)	(3)(4)	scfm	8991	8753	6712	4775
AIR FLOW	(WET)	(3)(4)	lb/hr	39867	38813	29761	21174
INLET MANIFOLD PRESSURE	100	(5)	in Hg(abs)	70.9	69.1	53.5	38.2
EXHAUST TEMPERATURE - ENGINE OUTLET	Name of the last o	(6)	٩F	860	864	902	946
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(7)(4)	ft3/min	23499	22954	18123	13343
EXHAUST GAS MASS FLOW	(WET)	(7)(4)	lb/hr	41013	39932	30639	21829
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(8)(9)	g/bhp-hr	0.70	0.70	0.70	0.70
CO		(8)(9)	g/bhp-hr	2.50	2.50	2.50	2.50
THC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	6.15	6.17	6.32	6.50
NMHC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	1.29	1.29	1.32	1.36
NMNEHC (VOCs) (mol. wt. of 15.84)		(8)(9)(10)	g/bhp-hr	0.78	0.78	0.80	0.82
HCHO (Formaldehyde)		(8)(9)	g/bhp-hr	0.26	0.27	0.28	0.31
CO2		(8)(9)	g/bhp-hr	440	442	462	497
EXHAUST OXYGEN		(8)(11)	% DRY	12.5	12.4	11.7	10.7
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(12)	Btu/min	36460	36082	31673	29348
HEAT REJ. TO ATMOSPHERE		(12)	Btu/min	13995	13966	13220	12448
HEAT REJ. TO LUBE OIL (OC)		(12)	Btu/min	18014	18020	17421	16975
HEAT REJ. TO AFTERCOOLER (AC)		(12)(13)	Btu/min	30381	30381	14197	2266
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW)		(14)	Btu/min	40106			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)		(13)(14)	Btu/min	53524			

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

Supporting Uses me salies for Emissions Calculations

APPENDIX C Supporting Documentation for Emissions Calculations

ALIES YOUR THAT SHIP SHIP

Wonsits Valley Compressor Station Emissions Inventory - PTE

Gas Analysis Calculation Sheet

Sample Date: Average of 2017 samples

								LHV Content		HHV Content
Component	Mole %	Mole Frac.	Lb/Lb mole	MW	voc	HAP	Btu/scf	Btu/scf*Mole Frac	Btu/scf	Btu/scf*Mole Frac
Carbon Dioxide	0.997900789	0.0100	44.01	0.44			0.0	0.00	0.0	0.00
Hydrogen Sulfide	0	0.0000	34.08	0.00			586.8	0.00	637.1	0.00
Nitrogen	0.278778519	0.0028	28.02	0.08			0.0	0.00	0.0	0.00
Methane	90.0995672	0.9010	16.04	14.45			909.4	819.37	1010.0	910.01
Ethane	4.701248283	0.0470	30.07	1.41			1618.7	76.10	1769.6	83.19
Propane	2.158413553	0.0216	44.09	0.95	0.95		2314.9	49.97	2516.1	54.31
Isobutane	0.434084966	0.0043	58.12	0.25	0.25		3000.4	13.02	3251.9	14.12
n-butane	0.599283509	0.0060	58.12	0.35	0.35		3010.8	18.04	3262.3	19.55
Isopentane	0.215817386	0.0022	72.15	0.16	0.16		3699.0	7.98	4000.9	8.63
n-pentane	0.176911941	0.0018	72.15	0.13	0.13		3706.9	6.56	4008.9	7.09
Hexanes	0.165100273	0.0017	86.18	0.14	0.14	0.14	4404.1	7.27	4750.2	7.84
Heptanes	0.112168714	0.0011	100.21	0.11	0.11		5100.3	5.72	5500.4	6.17
C8+ Heavies	0.060724867	0.0006	315.00	0.19	0.19		5796.3	3.52	5794.1	3.52
Totals	100.00	1.0000		18.6645	2.2816	0.1423		1007.60		1114.43

VOC wt%	1222.40%
Non-Methane VOC wt%	5416.14%
HAP wt%	76.23%

Total: 1,235,023 Btu/hr

Andeavor Field Services, LLC

Wonsits Valley Compressor Station Emissions Inventory - PTE

Waste Gas BTU Content

Component	Formula	Heat of Combustion [Btu/lb]	Condenser Vent Loading [lb/hr]	Flash Tank Loading [lb/hr]	Heat Content [Btu/hr]
Water	H2O	0	7.70E-01	1.59E-01	0.77
CO2	CO2	0	4.84E+00	5,86E+00	4.84
Nitrogen	N2	0	1.35E-02	1.49E-01	0.01
Methane	CH4	21502	2.17E+00	2.35E+01	526801.17
Ethane	C2H6	20416	1.66E+00	5.81E+00	139034.62
Propane	C3H8	19929	2.40E+00	4.54E+00	110409.06
Isobutane	C4H10	19614	9.25E-01	1.38E+00	46682.25
n-Butane	C4H10	19665	1.60E+00	2.04E+00	59783.20
Isopentane	C5H12	19451	5.65E-01	9.44E-01	37813.31
n-Pentane	C5H12	19499	5.91E-01	8.15E-01	35391.28
n-Hexane	C5H10	19001	2.98E-01	4.82E-01	28159.78
Cyclohexane	C6H14	19391	8.05E-01	4.34E-01	27807.50
Other Hexanes	C6H12	18846	4.35E-01	6.92E-01	31887.87
Heptanes	C6H14	19200	2.97E-01	6.15E-01	31008.30
Methylcyclohexane	C7H16	19250	7.26E-01	6.11E-01	31012.48
2,2,4-Trimethylpentane	C7H14	18797	1.11E-02	4.29E-02	19603.40
Benzene	C6H6	17446	2.37E+00	2.56E-01	21914.55
Toluene	C7H8	17601	1.54E+00	3.13E-01	23111.65
Ethylbenzene	C8H10	17752	1.69E-02	7.25E-03	17880.72
Xylenes	C8H10	17723	1.72E-01	6.21E-02	18823.77
C8+Heavies		19000	2.49E-03	4.68E-01	27892.00

Note: From GLYCalc 4.0 data for Condenser Vent Stream & Flash Tank Off Gas Stream.

Dehy Waste Gas Streams:		
Flash Tank Off Gas Stream	772.0	scf/hr
Condenser Vent Stream	203.0	scf/hr
Total Waste Gas Flow =	975.0	scf/hr
Waste Gas Btu Content =	1267	Btu/scf

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Liquid Analysis

Sample Date:

8/5/2011

Component	Mole %	Mole Frac.	lb/lb-mol	MW	VOC
H2S	0.000	0.00000	34.08	0.00	
Helium	0	0	4.00	0.00	
Oxygen	0	0	32.00	0.00	
CO2	0.165	0.001648	44.01	0.07	
N2	0.0264	0.000264	28.02	0.01	
Methane	9.852	0.09852	16.04	1.58	
Ethane	2.804	0.028039	30.07	0.84	
Propane	3.335	0.033353	44.09	1.47	1.4705
Isobutane	1.515	0.015152	58.12	0.88	0.8806
n-Butane	3.113	0.031131	58.12	1.81	1.8093
Isopentane	2.684	0.026843	72.15	1.94	1.9367
n-Pentane	2.780	0.027802	72.15	2.01	2.0059
Cyclopentane	0.000	0	70.13	0.00	0.0000
n-Hexane	3.216	0.032163	86.18	2.77	2.7718
Cyclohexane	0.000	0.00000	84.16	0.00	0.0000
Other Hexanes	3.695	0.03695	85.00	3.14	3.1404
Heptanes	18.409	0.184092	100.20	18.45	18.4460
Methycyclohexane	0.000	0.00000	98.18	0.00	0.0000
2,2,4 Trimethylpentane	1.375	0.01375	114.22	1.57	1.5702
Benzene	1.133	0.01133	78.11	0.89	0.8852
Toluene	2.951	0.02951	92.14	2.72	2.7191
Ethylbenzene	0.220	0.002203	106.17	0.23	0.2339
Xylenes	2.522	0.025216	106.17	2.68	2.6772
C8+ Heavies	40.204	0.402044	120.00	48.25	48.2453
Total	100.00	1.000	S SILVERS	91.30	88.7922

N	/ei	gł	it	%	Y
				()
				()
				()
	0	.0	6	92	2
	0	.0	0	7	1
	1	.5	0	88	3
Г	0	.8	0	49	9
	- 1	1.	4	04	4
Π	0	.8	4	08	3
	1	.7	2	74	1
	1	.8	4	89	9
		1.	9	1	5
	2	.6	4	6	1
-	3	.0	3	96	3
	16				
H	1	.4	9	9	1
Т	0	.8	4	52	2
Т	2	.5	9	58	3
	- 1	.2			2
٠	- 100	.5	77.		
10	5 9	2.177	200	V. / /	
		00			_

 VOC wt%
 97.26%

 HAP wt%
 12.23%

 CO2/VOC fraction (wt%)
 0.08%

 CH4/VOC fraction (wt%)
 1.78%

Wonsits Valley Compressor Station Emissions Inventory - PTE

Wet Gas Analysis

Sample Date: August 31, 2012

Component	Mole %	Mole Frac.	lb/lb-mol	MW	VOC
H2S	0.000	0.00000	34.08	0.00	
Helium		0	4.00	0.00	
Oxygen	0	0	32.00	0.00	
CO2	1.079	0.010785	44.01	0.47	
N2	0.2834	0.002834	28.02	0.08	
Methane	90.130	0.901296	16.04	14.46	
Ethane	4.712	0.047115	30.07	1.42	
Propane	2.068	0.020675	44.09	0.91	0.9116
Isobutane	0.411	0.004107	58.12	0.24	0.2387
n-Butane	0.522	0.005215	58.12	0.30	0.3031
Isopentane	0.212	0.002116	72.15	0.15	0.1527
n-Pentane	0.158	0.001578	72.15	0.11	0.1139
Cyclopentane	0.000	0	70.13	0.00	0.0000
n-Hexane	0.069	0.000686	86.18	0.06	0.0591
Cyclohexane	0.042	0.00042	84.16	0.04	0.0355
Other Hexanes	0.108	0.00108	85.00	0.09	0.0921
Heptanes	0.069	0.000694	100.20	0.07	0.0695
Methycyclohexane	0.058	0.00058	98.18	0.06	0.0571
2,2,4 Trimethylpentane	0.006	0.00006	114.22	0.01	0.0072
Benzene	0.017	0.00017	78.11	0.01	0.0136
Toluene	0.019	0.000188	92.14	0.02	0.0173
Ethylbenzene	0.001	0.000005	106.17	0.00	0.0005
Xylenes	0.005	0.000045	106.17	0.00	0.0048
C8+ Heavies	0.034	0.000337	120.00	0.04	0.0404
Total	100.000	1.000		18.54	2.1171

VOC wt% 11.42% HAP wt% 4.84% CO2/VOC fraction (wt%) 22.42% CH4/VOC fraction (wt%) 682.86%

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Venting during Pig Receiving and Launching

Launcher/receiver #1			Launcher/receiver #2			Launcher/receiver #3			Launcher/receiver #4		
Volume	41.60	cf	Volume	5.90	cf	Volume	46.60	cf	Volume	10.20	cf
Pressure	1030	psi	Pressure	1030	psi	Pressure	1030	psi	Pressure	1030	psi
Number of Vents/yr	1	vents/yr	Number of Vents/yr	0	vents/yr	Number of Vents/yr	12	vents/yr	Number of Vents/yr	15	vents/yr
Vent Volume	3455.48	scf/vent	Vent Volume	490.08	scf/vent	Vent Volume	3870.81	scf/vent	Vent Volume	847.26	scf/vent
Annual Vent Volume	3455.48	scf/yr	Annual Vent Volume	0.00	scf/yr	Annual Vent Volume	46449.68	scf/yr	Annual Vent Volume	12708.87	scf/yr

Gas Vent Rate (scf/year)	Pollutant	Pollutant Fraction (lb/lb mol)	lb/yr	lb/hr	tpy
62614.03	VOC	2.12	349.76	0.040	0.175
62614.03	HAPs	0.10	16.94	0.002	0.008

Notes: Receiver volume based on engineering calculations

Vented volume (scf/release) = Receiver volume (cf) * Receiver pressure (psi) * 1/atmospheric pressure (psi)

lb VOC/yr = vented volume (scf/release) *# of releases * lbmol/379 * Molecular Weight of Gas (lb gas/lb-mol) * % VOC (lb voc/lb gas)

GHG Emissions	tpy
CO ₂	0.04
CH₄ (as CO₂e)	29.85
CO ₂ e	29.9

Notes: CO₂ is based on fraction of CO₂/VOC in liquid (see gas analysis)

CH₄ is based on fraction of CH₂/VOC in liquid (see gas analysis)

CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

	Actual Emissions (Tons/Year)										
Emissions Unit ID	HAP1 2,2,4 Tri	HAP2 Acetaldehyde	HAP3 Acrolein	HAP4 Benzene	HAP5 Ethylbenzene	HAP6 HCHO	HAP7 Methanol	HAP8 n-C6	HAP9 Toluene	HAP10 Xylenes	
C202		0.5	0.3	0.0	0.0	1.6	0.1	0.1	0.0	0.0	
C203		0.5	0.3	0.0	0.0	1.6	0.1	0.1	0.0	0.0	
C204		0.5	0.3	0.0	0.0	1.6	0.1	0.1	0.0	0.0	
C206		0.42	0.26	0.02	0.00	2.69	0.13	0.06	0.02	0.01	
C207		0.6	0.4	0.0	0.0	2.2	0.2	0.1	0.0	0.0	
D-1	0.0			1.5	0.1			0.3	2.0	0.8	
T-1	0.00			0.00	0.00			0.02	0.00	0.00	
EL	0.0			0.0	0.0			0.1	0.1	0.1	
FL-1				0.0		0.0		0.0	0.0		
C-1				0.0		0.0		0.0	0.0		
C-2				0.0		0.0		0.0	0.0	1	
СВ	3.4E-02	F-12		6.5E-02	2.5E-03			2.8E-01	8.2E-02	2.3E-02	
									104	=	
SUBTOTALS	0.1	2.5	1.5	1.7	0.1	9.8	0.7	1.0	2.3	0.9	

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Misc Storage Tank Emissions

Uncontrolled

		Capacity		VOC			HAPs		CO2	CH ₄ (as CO ₂ e)	COze
Source ID	Description	barrels	lb/hr	lb/yr	tpy	lb/hr	lb/yr	tpy	tpy	tpy	tpy
T-2	New EG	100	3.42E-06	0.03	1.50E-05	3.42E-06	3.00E-02	1.50E-05	2		-
T-3	New Oil	100	0.06	566	0.28	0.01	57	0.03			-
T-4	Used Oil	100	0.02	200	0.10	0.002	20	0.01	-		-
T-5	Used EG	100	3.42E-06	0.03	1.50E-05	3.42E-06	3.00E-02	1.50E-05	-		7-1
T-6	TEG	65	-	-		-	-				1.5
T-7	Water	100	-			-		-			
T-8	Dehy Drip Tank	100	0.08	736	0.37	0.004	31	0.02	0.013	7.29	7
T-9	Dehy Drip Tank	100	0.08	736	0.37	0.004	31	0.02	0.013	7.29	7
	Total	765.00	0.26	2237.8	1.12	0.02	138.28	0.07	0.03	14.58	15

Note: Emissions calculated using EPA Tanks v 4.0.9d

CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Engine Startup Emissions (Insignificant Emissions)

Unit ID	Vent Rate scf/event	# Events event/yr	VOC Fraction lb/lb-mol	VOC lb/yr	VOC tpy	HAPs tpy	CH ₄ (as CO ₂ e)	CO ₂	CO₂e tpy
C202	400	32	2.12	71.50	0.036	0.002	6.10	0.008	6.11
C203	400	36	2.12	80.44	0.040	0.002	6.87	0.009	6.88
C204	400	38	2.12	84.91	0.042	0.002	7.25	0.010	7.26
C206	400	43	2.12	96.08	0.048	0.002	8.20	0.011	8.21
C207	400	47	2.12	105.02	0.053	0.003	8.96	0.012	8.98
	Total					0.011	37.38	0.05	37.43

Compressor Blowdowns (Significant Emissions)

Unit ID	Vent Rate scf/event	# Events event/yr	VOC Fraction lb/lb-mol	VOC lb/yr	VOC tpy	HAPs tpy	CH₄ (as CO₂e)	CO ₂ tpy	CO₂e tpy
C202	12000	60	2.12	4021.94	2.01	0.10	343.30	0.451	343.75
C203	12000	60	2.12	4021.94	2.01	0.10	343.30	0.451	343.75
C204	12000	60	2.12	4021.94	2.01	0.10	343.30	0.451	343.75
C206	12000	60	2.12	4021.94	2.01	0.10	343.30	0.451	343.75
C207	12000	60	2.12	4021.94	2.01	0.10	343.30	0.451	343.75
Total					10.05	0.49	1716.51	2.25	1718.76

Emergency Shutdowns (Insignificant Emissions)

Vent Rate scf/event	# Events event/yr	VOC Fraction Ib/Ib-mol	VOC lb/yr	VOC tpy	HAPs tpy	CH ₄ (as	CO ₂	CO ₂ e
12000	2	2.12	134.06	0.067	0.003	11.44	0.015	11.46

Note: All emissions based on conservatively estimated vent rate and representative gas content (%VOC, %CH₄, etc)

CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Truck Loading Emissions

AP-42 Chapter 5.2 (1/95) - Transportation and Marketing of Petroleum Liquids
AP-42 Table 5.2-5 Total Uncontrolled Organic Emission Factors for Petroleum Liquid Rail Tank Cars and Tank Trucks (Transit)

L_L = 12.46 * S * P * M/T

L_L = Loading loss, lb/1000 gal or liquid loaded

S = Saturation factor

P = True vapor pressure, psia

M = Molecular weight of tank vapors, lb/lb-mole

T = Temperature, °R (°F + 460)

From Table 5.2-1, typical saturation factor = 0.6 for submerged loading From Table 7.1-2, liquid classified at gasoline RVP=7 at 60°F, M = 68, P = 3.5

 L_L (lb/1000 gal)= 12.46 * 0.6 * 3.5 psia * 68 lb/lb-mole * 1/(60 + 460) $^{\rm o}$ R L_L = 3.42 lb/1000 gal

Emission factor = Loading rate = 3.42 lb/1000 gal (based on gasoline, submerged loading, dedicated normal service)

60.0 barrels per day 21,900.0 barrels per year

2,520 gallons per day (on average)

Emissions	lb/yr	lb/hr	tpy
VOC	3147	0.36	1.57

Emission calculation:

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Dehydrator Backup Combustor (FL-901), C-2

Source ID Number	C-2	
Make/Model	??	
S/N	??	
Mfg. Date	??	
Fuel Heating Value	1114	Btu/scf
Pilot Flow Rate 1	51	scf/hr
Flare Heat Input	0.06	MMBtu/hr
Hours Running with Flare Down	266	hr/yr
Actual Operation	8,477	hr/yr

Pilot design rate assumed the same as the flare (FL-1)

Vents to Backup Combustor

Vent ID	Description	Number of Units	Gas Emitted (Mscfd)	Flow Rate (scf/yr)	Vent Heating Value (Btu/scf) (HHV)	Annual Heat Input to Combustor (MMBtu/yr)
D-1	Dehy Vents	1	23.4	259,350.0	1,579.9	409.7

Emissions from Pilot and Igniter

Pollutant	Emissio	n Factor	Nominal	Hrs of	Estimated	d Emissions	Source of
	(lb/MMscf)	(Ib/MMBtu) (HHV)	Rating (MMBtu/hr)	Operation (hrs/yr)	(lb/hr)	(tpy)	Emission
NOx	100.00	0.09	0.06	8477	5.10E-03	0.02	AP-421
со	84.00	0.08	0.06	8477	4.28E-03	1.8E-02	AP-421
voc	5.50	0.00	0.06	8477	2.81E-04	1.2E-03	AP-42 ²
SO ₂	0.60	0.001	0.06	8477	3.06E-05	1.30E-04	AP-42 ²
PM, PM ₁₀ , PM _{2.5} ⁶	7.60	0.01	0.06	8477	3.88E-04	1.64E-03	AP-42 ²
Benzene	2.1E-03	0.000002	0.06	8477	1.07E-07	4.54E-07	AP-42 ³
Dichlorobenzene	1.2E-03	0.000001	0.06	8477	6.12E-08	2.59E-07	AP-423
Formaldehyde	7.5E-02	0.000067	0.06	8477	3.83E-06	1.62E-05	AP-42 ³
Hexane	1.8E+00	0.001615	0.06	8477	9.18E-05	3.89E-04	AP-423
Toluene	3.4E-03	0.000003	0.06	8477	1.73E-07	7.35E-07	AP-42 ³

¹ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-1, Emission Factors for Nitrogen Oxides (NOx) and Carbon Monoxide (CO) from Natural Gas Combustion

Emissions from Combustion of Waste Gas (NOx and CO)

Pollutant	Emission	Annual Heat	Heat Input	Hours of	Estimated	Estimated Emissions	
	Factor (Ib/MMBtu)	Input to Combustor (MMBtu/yr)	(MMBtu/hr)	Operation (hr/yr)	(lb/hr)	(tpy)	Emission
NOx	0.14	409.7	0.048	8477	0.0068	0.03	WY C6S27
co	0.035	409.7	0.048	8477	0.0017	0.01	WY C6S27

⁷ Emission Factors from Wyoming C6S2 - O&G Production Facilities Permitting Guidance.

Potential Controlled / Uncontrolled Emissions

Pollutant	Estimated	Emissions	Ottoman
	(lb/hr)	(tpy)	Streams
NOx	0.0119	0.05	Pilot and Igniter, Waste Gas
co	0.0060	0.03	Pilot and Igniter, Waste Gas
voc	0.0003	1.2E-03	Pilot and Igniter
SO ₂	0.0000	1.30E-04	Pllot and Igniter
PM, PM ₁₀ , PM ₂₅	0.0004	1.64E-03	Pilot and Igniter
Benzene	1.07E-07	4.54E-07	Pilot and Igniter
Dichlorobenzene	6.12E-08	2.59E-07	Pilot and Igniter
Formaldehyde	3.83E-06	1.62E-05	Pilot and Igniter
Hexane	9.18E-05	3.89E-04	Pilot and Igniter
Toluene	1.73E-07	7.35E-07	Pilot and Igniter

Note: These emissions represent the pilot and ignitor gas combustion and emissions created in combustion of vented blowdown vapors. The emissions resulting from the combustion of other source streams routed to this flare for control are shown as the controlled emissions with each respective emission source.

² EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-2, Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion

³ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion

⁶ PM includes both condensible and filterable PM. All PM is assumed to be PM2.5, so PM = PM₁₀ = PM_{2.5}

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Tank Vapor Combustor (FL-4002), C-1

Source ID Number	C-1	
Make/Model	Cimarron 30	ie .
S/N	53000709	
Mfg. Date	February 20	12
Fuel Heating Value	1114	Btu/scf
Pilot Flow Rate 1	13	scf/hr
Pilot Flow Rate 1	0.11	MMscf/yr
Flare Heat Input	0.01	MMBtu/hr
Actual Operation	8,780	hrs

Pilot design rate based on mfg data

Vante to Combustor

Vent ID	Description	Number of Units	Gas Emitted (Mscfd)	Flow Rate (scf/yr)	Vent Heating Value (Btu/scf) (HHV)		Heat Input to Combustor includes pilot (MMBtu/hr)
PST/MODE A POPUL.	Description		and the same of th			0 - 15V.55	
T-1 & T-2	Tank Vents	1	2.17	792,050.0	1,579.9	1,251.3	0.16

Emissions from Pilot and Igniter

Pollutant	Emissio	n Factor	Nominal	Hrs of	Estimated	Emissions	Source of
	(lb/MMscf)	(Ib/MMBtu) (HHV)	Rating (MMBtu/hr)	Operation (hrs/yr)	(lb/hr)	(tpy)	Emission
NOx	100.00	0.09	0.01	8760	1.30E-03	0.01	AP-421
co	84.00	0.08	0.01	8760	1.09E-03	4.8E-03	AP-421
voc	5.50	0.00	0.01	8760	7.15E-05	3.1E-04	AP-42 ²
SO ₂	0.60	0.001	0.01	8760	7.80E-06	3.42E-05	AP-42 ²
PM, PM ₁₀ , PM _{2.5} ⁶	7.60	0.01	0.01	8760	9.88E-05	4.33E-04	AP-42 ²
Benzene	2.1E-03	0.000002	0.01	8760	2.73E-08	1.20E-07	AP-42 ³
Dichlorobenzene	1.2E-03	0.000001	0.01	8760	1.56E-08	6.83E-08	AP-42 ³
Formaldehyde	7.5E-02	0.000067	0.01	8760	9.75E-07	4.27E-06	AP-423
Hexane	1.8E+00	0.001615	0.01	8760	2.34E-05	1.02E-04	AP-423
Toluene	3.4E-03	0.000003	0.01	8760	4.42E-08	1.94E-07	AP-423

¹ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-1, Emission Factors for Nitrogen Oxides (NOx) and Carbon Monoxide (CO) from Natural Gas Combustion

Potential Emissions from Combustion (NOx and CO)

Pollutant	Emission	Annual Heat	Potential	Hrs of Operation (hrs/yr)	Estimated	Source of	
	Factor (Ib/MMBtu)	Input to Combustor (MMBtu/yr)	Heat Input (MMBtu/hr)		(lb/hr)	(tpy)	Emission
NOx CO	0.14 0.035	1251.3 1251.3	0.143 0.143	8760 8760	0.0200 0.0050	0.09 0.02	WY C6S2 ⁷ WY C6S2 ⁷

⁷ Emission Factors from Wyoming C6S2 - O&G Production Facilities Permitting Guidance.

Potential Controlled / Uncontrolled Emissions

Pollutant	Estimated	Emissions
	(lb/hr)	(tpy)
NOx	0.0213	0.09
co	0.0061	0.03
voc	0.0001	3.1E-04
SO₂	0.0000	3.42E-05
PM, PM ₁₀ , PM ₂₅	0.0001	4.33E-04
Benzene	2.73E-08	1.20E-07
Dichlorobenzene	1.56E-08	6.83E-08
Formaldehyde	9.75E-07	4.27E-06
Hexane	2.34E-05	1.02E-04
Toluene	4.42E-08	1.94E-07

Note: These emissions represent the pilot and ignitor gas combustion and emissions created in combustion of vented blowdown vapors. The emissions resulting from the combustion of other source streams routed to this flare for control are shown as the controlled emissions with each respective emission source.

² EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-2, Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion

³ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion

 $^{^6}$ PM includes both condensible and filterable PM. All PM is assumed to be PM2.5, so PM = PM₁₀ = PM_{2.5}

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Dehydrator BTEX Flare

Source ID Number	FL-1	
Fuel Heating Value	1114	Btu/scf
Pilot Flow Rate 1	51	scf/hr
Pilot Flow Rate 1	0.45	MMscf/yr
Flare Heat Input	0.06	MMBtu/hr
Actual Operation	8760	hrs

Pilot design rate based on mfg data

Vents to Flare

Vent ID	Description	Number of Units	Gas Emitted (Mscfd)	Flow Rate (scf/yr)	Vent Heating Value (Btu/scf) (HHV)	Annual Heat Input to Flare (MMBtu/yr)	Heat Input to Flare, includes pilot (MMBtu/hr)
D-1	Dehy Vents	1	23.4	8,541,000	1,267	10,818.8	1.3

Potential Emissions from Pilot and Igniter

Pollutant	Emissio	n Factor	Nominal	Hrs of	Estimated	Emissions	Source of
	(lb/MMscf)	(Ib/MMBtu) (HHV)	Rating (MMBtu/hr)	Operation (hrs/yr)	(lb/hr)	(tpy)	Emission
NOx	100.00	0.09	0.06	8760	5.10E-03	0.02	AP-421
co	84.00	0.08	0.06	8760	4.28E-03	0.02	AP-421
voc	5.50	0.00	0.06	8760	2.81E-04	0.00	AP-42 ²
SO₂	0.60	0.001	0.06	8760	3.06E-05	1.34E-04	AP-42 ²
PM, PM ₁₀ , PM _{2.5} 6	7.60	0.01	0.06	8760	3.88E-04	1.70E-03	AP-42 ²
Benzene	2.1E-03	0.000002	0.06	8760	1.07E-07	4.69E-07	AP-42 ³
Dichlorobenzene	1.2E-03	0.000001	0.06	8760	6.12E-08	2.68E-07	AP-42 ³
Formaldehyde	7.5E-02	0.000067	0.06	8760	3.83E-06	1.68E-05	AP-42 ³
Hexane	1.8E+00	0.001615	0.06	8760	9.18E-05	4.02E-04	AP-42 ³
Toluene	3.4E-03	0.000003	0.06	8760	1.73E-07	7.59E-07	AP-42 ³

¹ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-1, Emission Factors for Nitrogen Oxides (NOx) and Carbon Monoxide (CO) from Natural Gas Combustion

Emissions from Combustion of Waste Gas (NOx and CO)

Pollutant	Emission	Annual Heat	Potential	Hrs of Operation (hrs/yr)	Estimated	Source of	
	Factor (Ib/MMBtu)	Input to Flare (MMBtu/yr)	Heat Input (MMBtu/hr)		(lb/hr)	(tpy)	Emission Factor
NOx	0.14	10818.8	1.235	8760	0.1729	0.76	WY C6S2 ⁷
co	0.035	10818.8	1.235	8760	0.0432	0.19	WY C6S2 ⁷

⁷ Emission Factors from Wyoming C6S2 - O&G Production Facilities Permitting Guidance.

Potential Controlled / Uncontrolled Emissions

Pollutant	Estimated	Emissions
	(lb/hr)	(tpy)
NOx	0.1780	0.78
co	0.0475	0.21
voc	0.0003	0.001
SO ₂	0.0000	1.34E-04
PM, PM ₁₀ , PM ₂₅	0.0004	1.70E-03
Benzene	1.07E-07	4.69E-07
Dichlorobenzene	6.12E-08	2.68E-07
Formaldehyde	3.83E-06	1.68E-05
Hexane	9.18E-05	4.02E-04
Toluene	1.73E-07	7.59E-07

Note: These emissions represent the pilot and ignitor gas combustion and emissions created in combustion of vented blowdown vapors. The emissions resulting from the combustion of other source streams routed to this flare for control are shown as the controlled emissions with each respective emission source.

² EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-2, Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion

³ EPA AP-42, Volume I, Fifth Edition - July 1998, Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion

^{4 40} CFR Part 98, Subpart C, Tables C-1 and C-2.

⁵40 CFR Part 98, Subpart A, Table A-1, Global Warming Potentials (100-YearTime Horizon).

⁶ PM includes both condensible and filterable PM. All PM is assumed to be PM2.5, so PM = PM₁₀ = PM_{2.5}

Wonsits Valley Compressor Station

Emissions Inventory - PTE

R-1 - Dehydrator Reboiler

Emission Factors

NOx:	100	lb/MMscf
CO:	84	lb/MMscf
VOC:	5.5	lb/MMscf
PM:	7.6	lb/MMscf
SO _x :	0.6	lb/MMscf
CO ₂ :	53.0	kg/MMBtu
NOx: CO: VOC: PM: SO _x : CO ₂ : CH ₄ : N ₂ O:	1.0E-03	kg/MMBtu
N ₂ O:	1.0E-04	kg/MMBtu

Notes: Emission Factors provided by AP-42, Tables 1.4-1 & 1.4-2 (7/1998)

PM Emission Factor includes condensible and filterable; and PM=PM₁₀=PM_{2.5}

GHG Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2

CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Fuel Heating Value (Btu/scf, HHV)	1,114	Btu/scf
Operating Hours	8760	hr/yr
Fuel Rate	1.00	MMBtu/hi
Annual Fuel Use	7.86	MMscf/yr

Emission Rate (lb/hr)

Unit ID	Unit ID Unit Type	Fuel Rate	Op Hrs	NOx	CO	VOC	PM10	SOx
OIILID	Unit type	MMBTU/hr	hrs	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
R-1	Dehy Reboiler	1.00	8760	0.09	0.08	0.00	0.01	0.00

Annual Emissions (tpy)

Unit ID	Unit Type	Fuel Rate	Op Hrs	NOx	co	VOC	PM10	SOx	HAPs
Onterio	Unit Type	MMBTU/hr	hrs	tpy	tpy	tpy	tpy	tpy	tpy
R-1	Dehy Reboiler	1.00	8760	0.39	0.33	0.02	0.03	0.00	0.01

Annual CO 2 e Emissions (tpy)

Unit ID	Half Type	Fuel Rate	Op Hrs	CO ₂	CH ₄ (as CO ₂ e)	N ₂ O (as CO ₂ e)	CO ₂ e
Oncio	Unit Type	MMBTU/hr	hrs	tpy	tpy	tpy	tpy
R-1	Dehy Reboiler	1.00	8760	511.97	0.24	0.29	513

Annual HAP Emissions (tpy)

Pollutant	Emission Factor (lb/MMSCF)	Emission Factor (lb/MMBtu)	Emissions (tpy)
Benzene	2.1E-03	2.1E-06	9.0E-06
Formaldehyde	7.5E-02	7.4E-05	3.2E-04
Hexane	1.8E+00	1.8E-03	7.7E-03
Toluene	3.4E-03	3.3E-06	1.5E-05
Total			0.01

Note: Emission Factors provided by AP-42, Table 1.4-3 (7/2000)

Emission factors converted from lb/MMscf to lb/MMBtu by dividing by 1,020 Btu/scf per footnote of EPA AP-42, Table 1.4-3

Wonsits Valley Compressor Station Emissions Inventory - PTE

R-1 - Dehydrator Reboiler

Emission Factors

NOx:	100	lb/MMscf
CO:	84	lb/MMscf
VOC:	5.5	lb/MMscf
PM:	7.6	lb/MMscf
so _x :	0.6	lb/MMscf
CO ₂ :	53.0	kg/MMBtu
CH₄:	1.0E-03	kg/MMBtu
N ₂ O:	1.0E-04	kg/MMBtu

Notes: Emission Factors provided by AP-42, Tables 1.4-1 & 1.4-2 (7/1998) PM Emission Factor includes condensible and filterable; and PM=P M_{0} =P M_{0} P M_{0} =P M_{0} P M_{0} =P M_{0} P M_{0

GHG Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2 $\rm CO_2e$ emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Fuel Heating Value (Btu/scf, HHV)
Operating Hours

1,114 Btu/scf 8760 hr/yr 1.00 MMBtu/hr 7.86 MMscf/yr

Fuel Rate Annual Fuel Use

Emission Rate (lb/hr)

Unit ID	Unit Type	Fuel Rate	Op Hrs	NOx	CO	VOC	PM10	SOx
OtherD	ome type	MMBTU/hr	hrs	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
R-1	Dehy Reboiler	1.00	8760	0.09	0.08	0.00	0.01	0.00

Annual Emissions (tpy)

Unit ID	Unit Tune	Fuel Rate	Op Hrs	NOx	CO	VOC	PM10	SOx
Official	Unit Type	MMBTU/hr	hrs	tpy	tpy	tpy	tpy	tpy
R-1	Dehy Reboiler	1.00	8760	0.39	0.33	0.02	0,03	0.00

Annual CO 2 e Emissions (tpy)

Unit ID	Half Toma	Fuel Rate	Op Hrs	CO2	CH ₄ (as CO ₂ e)	N ₂ O (as CO ₂ e)	CO ₂ e
Official	Unit Type	MMBTU/hr	hrs	tpy	tpy	tpy	tpy
R-1	Dehy Reboiler	1.00	8760	511.97	0.24	0.29	513

Annual HAP Emissions (tpy)

Pollutant	Emission Factor (Ib/MMSCF)	Emission Factor (lb/MMBtu)	Emissions (tpy)
Benzene	2.1E-03	2.1E-06	9.0E-06
Formaldehyde	7.5E-02	7.4E-05	3.2E-04
Hexane	1.8E+00	1.8E-03	7.7E-03
Toluene	3.4E-03	3.3E-06	1.5E-05
Total			0.01

Note: Emission Factors provided by AP-42, Table 1.4-3 (7/2000)

Emission factors converted from lb/MMscf to lb/MMBtu by dividing by 1,020 Btu/scf per footnote of EPA AP-42, Table 1.4-3

Wonsits Valley Compressor Station Emissions Inventory - PTE

Fugitive Emissions

Component - Service	Emission Factor ¹	Emission Factor	Source Count ³	Percent VOC ³	Hours of Operation	Total HC Emission Rate	Total HC Emission Rate	Total VOC Emission Rate	Total VOC Emission Rate	Total HAP Emission Rate	CO _z *	CH ₄ (as CO ₂ e) ⁶	Total CO ₂ e Emission Rate *
	kg/hr/source	lb/hr/source		wt %	hr/yr	lb/hr	tpy	lb/hr	tpy	tpy	tpy	tpy	tpy
Valves - Gas/Vapor	4.5E-03	9.9E-03	217	11.42%	8760	2.1526	9.43	0.2458	1.08	0.05	0.24	183.75	184.00
Valves - Light Liquids	2.5E-03	5.5E-03	73	100.00%	8760	0.4022	1.76	0.4022	1.76	0.18	0.001	0.78	0.79
Valves - Heavy Liquids	8.4E-06	1.9E-05	0	100.00%	8760	0.0000	0.00	0.0000	0.00	0.00	0.00	0.00	0.00
Relief Valves - Gas/Vapor	8.8E-03	1.9E-02	0	11.42%	8760	0.0000	0.00	0.0000	0.00	0.00	0.00	0.00	0.00
Relief Valves - Light Liquids	7.5E-03	1.7E-02	0	100.00%	8760	0.0000	0.00	0.0000	0.00	0.00	0.00	0.00	0.00
Compressors	8.8E-03	1.9E-02	5	11.42%	8760	0.0970	0.42	0.0111	0.05	0.002	0.01	8.28	8.29
Pump Seals - Light Liquids	1.3E-02	2.9E-02	0	100.00%	8760	0.0000	0.00	0.0000	0.00	0.00	0.00	0.00	0.00
Pump Seals - Heavy Liquids	NA	NA	0	100.00%	8760	NA	NA.	NA	NA NA	N/A	N/A	N/A	N/A
Open-End - Gas/Vapor	2,0E-03	4.4E-03	24	11,42%	8760	0.1058	0.46	0.0121	0.06	0.003	0.01	9.03	9.05
Open-End - Light Liquid	1.4E-03	3.1E-03	1	100.00%	8760	0.0031	0.01	0.0031	0.01	0.001	0.00001	0.01	0.01
Open-End - Heavy Liquid	1.4E-04	3.1E-04	0	100.00%	8760	0.0000	0.00	0.0000	0.00	0.00	0.00	0.00	0.00
Connectors - Gas/Vapor	2,0E-04	4.4E-04	324	11.42%	8760	0.1426	0.62	0.0163	0.07	0.003	0.02	12.17	12.19
Connectors - Light Liquids	2.1E-04	4.6E-04	0	100.00%	8760	0.0000	0.00	0.0000	0.00	0:00	0.00	0.00	0.00
Connectors - Heavy Liquids	7.5E-06	1.7E-05	0	100,00%	8760	0.0000	0.00	0.0000	0.00	0.00	0.00	0.00	0,00
Flanges - Gas/Vapor	3.9E-04	8.6E-04	2000	11.42%	8760	1.7200	7.53	0.1964	0.86	0.04	0.19	146.82	147.02
Flanges - Light Liquids	1.1E-04	2.4E-04	850	100.00%	8760	0.2066	0.90	0.2066	0.90	0.09	0.001	0.40	0.40
Flanges - Heavy Liquids	3.9E-07	8.6E-07	0	100.00%	8760	0.0000	0.00	0.0000	0.00	0,00	0.00	0.00	0,00
		Totals				4.83	21.16	1.09	4.79	0.38	0.48	361.25	361,73

¹ Emission Factors provided by EPA-453.

² Source count based on 2008 Title V Application

³ Gas analysis based on worst case percent VOC

⁴ CO₂ is based on fraction of CO₂/VOC in liquid (see liquid analysis)

⁵ CH₄ is based on fraction of CH₄/VOC in liquid (see liquid analysis)

⁶ CO2e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Unit ID: T-1

Unit Descrip: One (1) 500-bbl Condensate Tank

Unit Make: Sivalls
Unit S/N: 98424
Annual Days: 365
Annual Hours: 8760

Annual Throughput: 21900 bbls per year

Daily Avg. Throughput: 60.00

Waste Gas: 2.17 Mscfd
Vapor Heating Value: 1,580 Btu/scf
Combustor Operation: 8,760 hr/yr

Combustor Control: 95%

Uncontrolled

Pollutant		Emissions	
Ponttant	lb/hr	lb/yr	tpy
VOC	3.00	26,240	13.12
n-Hexane	0.07	630	0.3150
Benzene	0.02	184	0.0920
Toluene	0.02	136	0.0680
Ethylbenzene	0.00	4	0.0020
Xylenes	0.00	32	0.0160
2,2,4 Trimethylpentane	0.01	112	0.0560
Total HAPs	0.13	1098	0.5490

4.81 lb/bbl (from 2017 actuals)

Note: Emissions calculated using E&P TANKS v 3.0 and site specific liquids anlysis

CO2e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

True vapor pressure of liquid and molar weight of vapors based on engineering estimation of liquid RVP.

Controlled

Pollutant		tpy w/			
Pollutant	lb/hr	lb/yr	tpy	downtime'	
VOC	0.15	1,312	0.656	0.66	
n-Hexane	0.00	32	0.0158	0.02	
Benzene	0.00	9	0.0046	0.00	
Toluene	0.00	7	0.0034	0.00	
Ethylbenzene	0.00	0	0.0001	0.00	
Xylenes	0.00	2	0.0008	0.00	
2,2,4 Trimethylpentane	0.00	6	0.0028	0.00	
Total HAPs	0.01	55	0.0275	0.03	

Note: Controlled Emissions from the condensate tank using a combustor, which has a 95% destruction efficiency CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

True vapor pressure of liquid and molar weight of vapors based on engineering estimation of liquid RVP.

*Combustor annual downtime: 0.00 hrs

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Unit ID: D-1

Unit Descrip: 100 MMscf/d TEG Dehydrator

Unit Make: Gas Conditioners Inc.

Unit S/N: 39-1-08

D-1	MARKET STATE
Annual Rate (MMscfd)	100.0
Glycol Pump Type	Electric
Glycol Pump Rate (gpm)	18.0
Operating Hours	8760.0
Flare & Backup Combustor Downtime (hr/yr)	140

Permit Limitation

Uncontrolled

Pollutant	Regenerator (lb/hr)	Flash Tank Off Gas (lb/hr)	Total (lb/hr)	Total (tpy)
Benzene	12.9317	0.2557	13.187	57.761
Toluene	22.686	0.3133	22.999	100.737
Ethylbenzene	0.8366	0.0073	0.844	3.696
Xylenes	9.9629	0.0621	10.025	43.910
n-Hexane	1.0546	0.4816	1.536	6.729
2,2,4-Trimethylpentane	0.093	0.0429	0.136	0.595
Total HAP	47.5648	1.1629	48.728	213.427
voc	76.0714	13.7061	89.778	393.225

Notes: Emissions calculated using actual operating parameters and GRI GLYCalc v 4.0.

Uncontrolled emissions include emissions from flash tank off gas and uncontrolled regenerator emissions.

CO2e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Controlled

Pollutant	Regenerator (lb/hr)	Flash Gas (lb/hr)	Total (lb/hr)	Total (tpy)	Total w/ downtime (tpy)*
Benzene	0.1186	0.0128	0.131	0.576	1.489
Toluene	0.0769	0.0157	0.093	0.406	2.009
Ethylbenzene	0.0008	0.0004	0.001	0.005	0.064
Xylenes	0.0086	0.0031	0.012	0.051	0.752
n-Hexane	0.0149	0.0241	0.039	0.171	0.276
2,2,4-Trimethylpentane	0.0006	0.0021	0.003	0.012	0.021
Total HAP	0.2204	0.0582	0.279	1.220	4.612
VOC	0.6374	0.6853	1.323	5.793	11.985

Notes: Controlled Emissions using a condenser and an enclosed flare; values from Flash Gas Emissions and Combustion Off Gas

Glycol pump rate based on actual data from monthly readups (engineering design is 16 gpm, maximum).

CO2e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Unit ID: C207

Unit Descrip: Caterpillar G3616LE Unit S/N: BLB00215 Unit Start-up: June, 2008 Unit Mfg Date: December 5, 2003

Reconstructed: 1/2014 Engine Type: 4SLB

Emission	Factors	(uncontrolled)	
FIIIIggioni	detois	(uncontrolled)	

	Source	
	Mfg data	
	Mfg. data	
nr.	Mfg. data	
nr	Mfg data	
San		

Note: DM Emission Englas includ	as condensible and filte	coblet and DM-DA	A -DM	
нсно:	0.26	g/hp-hr	Mfg. data	
PM.	9.99E-03	lb/MMBtu	AP-42	
voc:	1.07	g/hp-hr	Mfg data	
SO ₂ :	5,88E-04	lb/MMBtu	AP-42	
co:	2.50	g/hp-hr	Mfg data	
NO; CO: SO; VOC: PM:	1.00	g/hp-hr	Mfg data	
Name Plate Horsepower	4735	bhp	Mfg. data	
Site-Rated Horsepower	4554	bhp	Mfg data	

VOC Emission Factor includes NMNEHC from maufacturer data plus HCHO from manufacturer and acrolein and acetaldehyde from AP-42; manufacuter data does not include aldehydes

24,273 Fuel Use Rate (scf/hr) 30,668 Annual Fuel Consumption (MMscf/yr) 268.7 Fuel Heating Value (Btu/scf, HHV) 1,114 BSFC @ 100% Load (Btu/hp-hr) 7.505 Heat Input (MMBtu/hr) 34.2 Site Rated Horsepower (bhp) 4.554 Operating Hours 8,760

Source Test Emission Factors							
NOx (g/hp-hr)	Tested 5/16/2017	0.59					
NOx (g/hp-hr)	Tested 11/28/2017	0.50					
NOx (g/hp-hr)	2017 Test Maximum	0.59					
NOx (g/hp-hr)	Permit Limit	1.00					
CO (g/hp-hr)	Tested 5/16/2017	0.01					
CO (g/hp-hr)	Tested 11/28/2017	0.02					
CO (g/hp-hr)	2017 Test Maximum	0.02					
CO (g/hp-hr)	Permit Limit	1.00					

Pollutant		Uncontrolled Emissions				Controlled Emissions					7	
	EF Source	Emi	ssion Factor	Emissions (lb/hr)	Op. Hrs	фу	Emissi	on Factor	Emissions (lb/hr)	Op. Hrs	tpy	
NO,	Manufacturer/Source Testing	1.00	g/hp-hr	10.04	8760	43.97	1.00	g/hp-hr	10.04	8760	43.97	1
со	Manufacturer/Source Testing	2.50	g/hp-hr	25.10	8760	109.94	1.00	g/hp-hr	10.04	8760	43.97	60% control efficiency
SO ₂	AP-42, Table 3.2-2	5.88E-04	lb/MMBtu	0.02	8760	0.09	5.88E-04	lb/MMBtu	0.02	8760	0.09	
voc	Manufacturer	1.07	g/hp-hr	10.70	8760	46.87	0.53	g/hp-hr	5.35	8760	23.44	50% control efficiency
РМ	AP-42, Table 3.2-2	9.99E-03	lb/MMBtu	0.34	8760	1.50	9.99E-03	lb/MMBtu	0.34	8760	1.50	
HCHO	Manufacturer	0.26	g/hp-hr	2.61	8760	11.43	0.05	g/hp-hr	0.50	8760	2.20	81% control efficiency
Acetaldehyde	AP-42, Table 3.2-2	8.36E-03	lb/MMBtu	0.29	8760	1.25	4.18E-03	lb/MMBtu	0.14	8760	0.63	50% control efficiency
Acrolein	AP-42, Table 3.2-2	5.14E-03	lb/MMBtu	0.18	8760	0.77	2.57E-03	lb/MMBtu	0.09	8760	0.38	50% control efficiency
Benzene	AP-42, Table 3.2-2	4.40E-04	lb/MMBtu	0.015	8760	0.07	2.20E-04	lb/MMBtu	0.008	8760	0.03	50% control efficiency
Ethylbenzene	AP-42, Table 3.2-2	3.97E-05	lb/MMBtu	0.0014	8760	0.006	1.99E-05	lb/MMBtu	0.0007	8760	0.003	50% control efficiency
Toluene	AP-42, Table 3.2-2	4.08E-04	lb/MMBtu	0.014	8760	0.06	2.04E-04	lb/MMBtu	0.007	8760	0.03	50% control efficiency
Xylene	AP-42, Table 3.2-2	1.84E-04	lb/MMBtu	0.006	8760	0.03	9.20E-05	lb/MMBtu	0.003	8760	0.01	50% control efficiency
Methanol	AP-42, Table 3.2-2	2.50E-03	lb/MMBtu	0.09	8760	0.37	1.25E-03	lb/MMBtu	0.04	8760	0.19	50% control efficiency
n-Hexane	AP-42, Table 3.2-2	1.11E-03	lb/MMBtu	0.04	8760	0.17	5.55E-04	lb/MMBtu	0.02	8760	0.08	50% control efficiency
Total HAPs						14.16					3.56	

Notes: Controlled Emissions assumes oxidation catalyst removes 80% HCHO, and 50% VOC & other HAPs; Controlled EFs for NO, & CO from Consent Decree 2:08-CV-00167-TS-PMW;

PM Emission Factor includes condensible and filterable; and PM=PM $_{10}$ =PM $_{2.5}$

HAP Emission Factors provided by AP-42, Table 3.2-2 (7/2000).

Greenhouse Gas Emissions

Pollutant	Emission I	Emission Factor		Op. Hrs	tpy	EF Source	
CO2	53.02 kg/MMBtu		3995.00	8,760	17498	EPA MRR Table C-1	
CH₄ (as CO₂e)	0.001	kg/MMBtu	1.88	8,760	8.25	EPA MRR Table C-2	
N ₂ O (as CO ₂ e)	0.0001	kg/MMBtu	2.25	8,760	9.83	EPA MRR Table C-2	
CO _z e			3999.13		17516		

Notes: Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2 CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station Emissions Inventory - PTE

Unit ID: C206 Unit Descrip: Waukesha 12V AT 27GL Unit S/N: C-13271/2

Unit Start-up: March, 2001 Unit Mfg Date: December 7, 2000 Reconstructed: 5/2007

Engine Type: 4SLB

Emission Factors (unco	Source		
Site-Rated Horsepower	3100	bhp	Mfg data
Name Plate Horsepower	3295	bhp	Mfg data
NO _x	1.30	g/hp-hr	Mfg data
co	2.20	g/hp-hr	Mfg data
SO ₂	5.88E-04	lb/MMBtu	AP-42
voc	0.73	g/hp-hr	Mfg. data
PM:	9 99E-03	lb/MMBtu	AP-42
нсно	5.28E-02	Ib/MMBtu	AP-42

Note: PM Emission Factor includes condensible and filterable, and PM=PM 10=PM25

VOC Emission Factor includes NMNEHC from maufacturer data plus HCHO, acrolein and acetaldehyde from AP-42; manufacuter data do

Exhaust Gas Flow (cfm)	24,273
Fuel Use Rate (scf/hr)	20,529
Annual Fuel Consumption (MMscf/yr)	179.6
Fuel Heating Value (Btu/scf, HHV)	1,114
BSFC @ 100% Load (Btu/hp-hr, HHV)	7,380
BSFC @ 100% Load (Btu/hp-hr, LHV)	6,671
Heat Input (MMBtu/hr)	22.9
Site Rated Horsepower (bhp)	3,100
Operating Hours	8,760

Source Test Emission Factors							
NOx (g/hp-hr)	Tested 5/15/2017	0.55					
NOx (g/hp-hr)	2017 Test Maximum	0.55					
NOx (g/hp-hr)	Permit Limit	1.30					
CO (g/hp-hr)	Tested 5/15/2017	0.04					
CO (g/hp-hr)	2017 Test Maximum	0.04					
CO (g/hp-hr)	Permit Limit	1.00					

		Uncontrolled Emissions					Controlled Emissions						
Pollutant	EF Source	Emi	ssion Factor	Emissions (lb/hr)	Op. Hrs	tpy	Emissi	on Factor	Emissions (lb/hr)	Op. Hrs	tpy		
NO _x	Manufacturer/Source Testing	1 30	g/hp-hr	8.88	8760	38.91	1.30	g/hp-hr	8.88	8760	38.91		
co	Manufacturer/Source Testing	2 20	g/hp-hr	15.04	8760	65.85	1.00	g/hp-hr	6.83	8760	29 93	55% control efficiency	
SO ₂	AP-42, Table 3 2-2	5.88E-04	lb/MMBtu	0.01	8760	0.06	5.88E-04	Ib/MMBtu	0.01	8760	0.06		
voc	Manufacturer	0.73	g/hp-hr	5.00	8760	21.91	0.37	g/hp-hr	2.50	8760	10 96	50% pontrol efficiency	
PM	AP-42, Table 3.2-2	9.99E-03	lb/MMBtu	0.23	8760	1.00	9.99E-03	Ib/MMBtu	0.23	8760	1.00		
HCHO	AP-42, Table 3 2-2	0.05	lb/MMBtu	1.21	8760	5.291	0.09	g/hp-hr	0.62	8760	2.69	*************	
Acetaldehyde	AP-42, Table 3 2-2	8.36E-03	lb/MMBtu	0.19	8760	0.84	4 18E-03	Ib/MMBtu	0.10	8760	0.42	50% control efficiency	
Acrolein	AP-42, Table 3 2-2	5.14E-03	Ib/MM8tu	0 12	8760	0.52	2 57E-03	Ib/MMBtu	0.06	8760	0.26	50% control efficiency	
Benzene	AP-42, Table 3.2-2	4 40E-04	lb/MM8tu	0.010	8760	0.04	2 20E-04	Ib/MMBtu	0 005	8760	0.02	50% control efficiency	
Ethylbenzene	AP-42, Table 3 2-2	3 97E-05	lb/MMBtu	0.0009	8760	0 004	1.99E-05	Ib/MMBtu	0 0005	8760	0.002	50% control efficiency	
Toluene	AP-42, Table 3 2-2	4 08E-04	lb/MMBtu	0.009	8760	0.04	2.04E-04	Ib/MMBtu	0.005	8760	0.02	50% control efficiency	
Xylene	AP-42, Table 3.2-2	1 84E-04	Ib/MMBlu	0.004	8760	0.02	9.20E-05	Ib/MMBtu	0.002	8760	0.01	50% control efficiency	
Methanol	AP-42, Table 3.2-2	2.50E-03	Ib/MMBtu	0.06	8760	0.25	1.25E-03	Ib/MMBtu	0.03	8760	0.13	50% control efficiency	
n-Hexane	AP-42, Table 3 2-2	1.11E-03	lb/MM8tu	0.03	8760	0.11	5.55E-04	Ib/MMBtu	0.01	8760	0.06	50% control efficiency	
Total HAPs						7.11					3.61		

Notes: Controlled Emissions assumes oxidation catalyst removes 45% HCHO, and 50% VOC & other HAPs, Controlled EFs for NO₄ & CO from Consent Decree 2:08-CV-00167-TS-PMW,

PM Emission Factor includes condensible and filterable, and PM=PM 10=PM25

HAP Emission Factors provided by AP-42, Table 3 2-2 (7/2000)

Greenhouse Gas Emissions

Pollutant	ant Emission Factor Emissions (Ib/hr) Op. Hrs		Op. Hrs	tpy	EF Source	
CO2	53.02	kg/MMBtu	2674 19	8,760	11713	EPA MRR Table C-1
CH₄ (as CO₂e)	0.001	kg/MMBtu	1.26	8,760	5.52	EPA MRR Table C-2
N ₂ O (as CO ₂ e)	0 0001	kg/MMBtu	15.03	8,760	65.83	EPA MRR Table C-2
CO ₇ e			2690.48		11784	

Notes: Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2 CO₂e emissions reported per 40 CFR Part 98, 98 3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station Emissions Inventory - PTE

Unit ID: C204

Unit ID: C204
Unit Descrip: Caterpillar G3612LE
Unit S/N: 1YG00034
Unit Start-up: Spetember, 2007
Unit Mfg Date: May 12, 1993
Reconstructed: 9/2007
Engine Type: 4SLB

Emiceica	Cantan	(uncontrolled)

Emission Factors (unco	ontrolled)		Source	
Site-Rated Horsepower	3406	bhp	Mfg. data	
Name Plate Horsepower	3550	bhp	Mfg. data	
NO _x :	1.00	g/hp-hr	Mfg data	
co:	2.50	g/hp-hr	Mfg data	
SO ₂ :	5.88E-04	lb/MMBtu	AP-42	
VOC:	1.09	g/hp-hr	Mfg. data	
PM:	9.99E-03	lb/MMBtu	AP-42	
HCHO:	0.26	g/hp-hr	Mfg data	

VOC Emission Factor includes NMNEHC from maufacturer data plus HCHO from manufacturer and acrolein and acetaldehyde from AP-42; manufacuter data does not include aldehydes

Exhaust Gas Flow (cfm)	24.27
Fuel Use Rate (scf/hr)	23.029
Annual Fuel Consumption (MMscf/yr)	201.3
Fuel Heating Value (Btu/scf, HHV)	1,116
BSFC @ 100% Load (Btu/hp-hr)	7,535
Heat Input (MMBtu/hr)	25.7
Site Rated Horsepower (bhp)	3,406
Operating Hours	8,760

NOx (g/hp-hr)	Tested 5/15/2017	0.45
NOx (g/hp-hr)	Tested 11/27/2017	0.74
NOx (g/hp-hr)	2017 Test Maximum	0.74
NOx (g/hp-hr)	Permit Limit	1.00
CO (g/hp-hr)	Tested 5/15/2017	0.01
CO (g/hp-hr)	Tested 11/27/2017	0.02
CO (g/hp-hr)	2017 Test Maximum	8.02
CO (g/hp-hr)	Permit Limit	1.00

				Uncontrolled Emissions				Controlled Emissions				
Pollutant	EF Source	En	nission Factor	Emissions (ib/hr)	Op. Hrs.	tpy	Emissi	on Factor	Emissions (lb/hr)	Op. Hrs. 1	tpy	
NO _x	Manufacturer/Source Testing	1.00	g/hp-hr	7.51	8760	32.89	1.00	g/hp-hr	7.51	8760	32.89	-
CO	Manufacturer/Source Testing	2.50	g/hp-hr	18.77	8760	82.22	1.00	g/hp-hr	7.51	8760	32.89	60% control efficient
SO ₂	AP-42, Table 3.2-2	5.88E-04	lb/MMBtu	0.02	8760	0.07	5.88E-04	lb/MMBtu	0.02	8760	0.07	500 74 GOLIEGE EMGRESS
VOC	Manufacturer	1.09	g/hp-hr	8.16	8760	35.72	0.54	g/hp-hr	4.08	8760	17.86	50% control efficienc
PM	AP-42, Table 3.2-2	9.99E-03	lb/MMBtu	0.26	8760	1.12	9.99E-03	lb/MMBtu	0.26	8760	1.12	no se conte di discissione
нсно	Manufacturer	0.26	g/hp-hr	1.95	8760	8.55	0.05	g/hp-hr	0.38	8760	1.64	81% control efficient
Acetaldehyde	AP-42, Table 3.2-2	8.36E-03	lb/MMBtu	0.21	8760	0.94		lb/MMBtu	0.11	8760	0.47	50% control efficience
Acrolein	AP-42, Table 3.2-2	5.14E-03	lb/MMBtu	0.13	8760	0.58		lb/MMBtu	0.07	8760	0.29	50% control efficienc
Benzene	AP-42, Table 3.2-2	4.40E-04	lb/MMBtu	0.011	8760	0.05		lb/MMBtu	0.006	8760	0.02	50% control efficienc
Ethylbenzene	AP-42, Table 3.2-2	3.97E-05	lb/MMBtu	0.0010	8760	0.004	1.99E-05	lb/MMBtu	0.0005	8760	0.002	50% control efficienc
Toluene	AP-42, Table 3.2-2	4.08E-04	lb/MM8tu	0.010	8760	0.05		lb/MMBtu	0.005	8760	0.02	50% control efficienc
Xylene	AP-42, Table 3.2-2	1.84E-04	lb/MMBtu	0.005	8760	0.02		lb/MMBtu	0.002	8760	0.01	50% control efficienc
Methanol	AP-42, Table 3.2-2	2.50E-03	lb/MMBtu	0.06	8760	0.28		lb/MMBtu	0.03	8760	0.14	50% control efficienc
n-Hexane	AP-42, Table 3.2-2	1.11E-03	lb/MMBtu	0.03	8760	0.12		lb/MMBtu	0.01	8760	0.06	50% control efficienc
Total HAPs						10.59				3100	2.67	Se in admin or sciences

Controlled EFs for NO_x & CO from Consent Decree 2:08-CV-00167-TS-PMW;

PM Emission Factor includes condensible and filterable; and PM=PM₁₀=PM₂₅

HAP Emission Factors provided by AP-42, Table 3.2-2 (7/2000).

Greenhouse Gas Emissions

Pollutant	Emission	actor	Emissions (lb/hr)	Op. Hrs	tpy	EF Source
CO ₂	53.02	kg/MMBtu	2999.86	8,760	13139	EPA MRR Table C-1
CH₄ (as CO₂e)	0.001	kg/MMBtu	1,41	8,760	6.20	EPA MRR Table C-2
N ₂ O (as CO ₂ e)	0.0001	kg/MMBtu	1.69	8,760	7.39	EPA MRR Table C-2
CO2e			3002.96		13153	

Notes: Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2 CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station Emissions Inventory - PTE

Unit ID: C203

Unit JB: C203
Unit Secrip: Caterpillar G3612LE
Unit StN: 1YG00022
Unit Start-up: September, 2007
Unit Mfg Date: October 10, 1991
Reconstructed: 9/2007
Engine Type: 4SLB

Emission Factors (unconf		Source		
Site-Rated Horsepower	3406	bhp	Mfg data	
Name Plate Horsepower	3550	bhp	Mfg data	
NO _s :	1.00	g/hp-hr	Mfg data	
CO:	2.50	g/hp-hr	Mfg data	
SO₂:	5.88E-04	lb/MMBtu	AP-42	
VOC:	1.09	g/hp-hr	Mfg data	
PM:	9.99E-03	lb/MMBtu	AP-42	
HCHO:	0.26	g/hp-hr	Mfg. data	

VOC Emission Factor includes NMNEHC from manufacturer data plus HCHO from manufacturer and acrolein and acetaldehyde from AP-42; manufacuter data does not include aldehydes

Exhaust Gas Flow (cfm)	24,27
Fuel Use Rate (scf/hr)	23,029
Annual Fuel Consumption (MMscf/yr)	201.7
Fuel Heating Value (Btu/scf, HHV)	1,114
BSFC @ 100% Load (Btu/hp-hr, HHV)	7,53
Heat Input (MMBtu/hr)	25.3
Site Rated Horsepower (bhp)	3,400
Operating Hours	8,76

Source Yest Emission	Factors	
NOx (g/hp-hr)	Tested 5/17/2017	0.28
NOx (g/hp-hr)	Tested 11/29/2017	0.38
NOx (g/hp-hr)	2017 Test Maximum	0.38
NOx (g/hp-hr)	Permit Limit	1.00
CO (g/hp-hr)	Tested 5/17/2017	2.45E-03
CO (g/hp-hr)	Tested 11/29/2017	0.00
CO (g/hp-hr)	2017 Test Maximum	2.45E-03
CO (g/hp-hr)	Permit Limit	1.00

	Uncontrolled Emissions					Controlled Emissions						
Pollutant	EF Source	En	nission Factor	Emissions (lb/hr)	Op. Hrs	tpy	Emissi	on Factor	Emissions (lb/hr)	Op. Hrs	tpy	
NO,	Manufacturer/Source Testing	1,00	g/hp-hr	7.51	8760	32.89	1.00	g/hp-hr	7.51	8760.00	32.89	
co	Manufacturer/Source Testing	2.50	g/hp-hr	18.77	8760	82.22	1.00	g/hp-hr	7.51	8760.00	32.89	60% control efficience
SO ₂	AP-42, Table 3.2-2	5.88E-04	lb/MMBtu	0.02	8760	0.07	5.88E-04	lb/MMBtu	0.02	8760.00	0.07	
VOC	Manufacturer	1.09	g/hp-hr	8.16	8760	35.72	0.54	g/hp-hr	4.08	8760	17.86	50% control efficience
PM	AP-42, Table 3.2-2	9.99E-03	lb/MMBtu	0.26	8760	1.12	9.99E-03	lb/MMBtu	0.26	8760	1.12	- Commission of the Commission
HCHO	Manufacturer	0.26	g/hp-hr	1.95	8760	8.55	0.05	g/hp-hr	0.38	8760	1,64	81% control efficience
Acetaldehyde	AP-42, Table 3.2-2	8.36E-03	lb/MMBtu	0.21	8760	0.94	4.18E-03	lb/MMBtu	0.11	8760	0.47	50% control efficience
Acrolein	AP-42, Table 3.2-2	5.14E-03	lb/MMBtu	0.13	8760	0.58	2.57E-03	lb/MMBtu	0.07	8760	0.29	50% control efficiency
Benzene	AP-42, Table 3.2-2	4.40E-04	lb/MMBtu	0.011	8760	0.05	2.20E-04	lb/MMBtu	0.006	8760	0.02	50% control efficience
Ethylbenzene	AP-42, Table 3.2-2	3.97E-05	lb/MMBtu	0.0010	8760	0.004	1.99E-05	lb/MMBtu	0.0005	8760	0.002	50% control efficiency
Toluene	AP-42, Table 3.2-2	4.08E-04	lb/MMBtu	0.010	8760	0.05	2.04E-04	lb/MMBtu	0.005	8760	0.02	50% control efficiency
Xylene	AP-42, Table 3.2-2	1.84E-04	lb/MMBtu	0.005	8760	0.02	9.20E-05	lb/MMBtu	0.002	8760	0.01	50% control efficiency
Methanol	AP-42, Table 3.2-2	2.50E-03	lb/MMBtu	0.06	8760	0.28	1.25E-03	lb/MMBtu	0.03	8760	0.14	50% control efficiency
n-Hexane	AP-42, Table 3.2-2	1.11E-03	lb/MMBtu	0.03	8760	0.12	5.55E-04	lb/MMBtu	0.01	8760	0.06	50% control efficiency
Total HAPs		Democratical				10.59					2.67	

Notes: Controlled Emissions assumes oxidation catalyst removes 80% HCHO, and 50% VOC & other HAPs; Controlled EFs for NO, & CO from Consent Decree 2:08-CV-00167-TS-PMW; PM Emission Factor includes condensible and filterable; and PM=PM₁₀=PM_{2.5}

HAP Emission Factors provided by AP-42, Table 3.2-2 (7/2000).

Greenhouse Gas	Emissions	

Pollutant	Emission	actor	Emissions (lb/hr)	Op. Hrs	tpy	EF Source	
CO,	53.02	kg/MMBtu	2999.86	8,760	13139	EPA MRR Table C-1	
CH₄ (as CO₂e)	0.001	kg/MMBtu	1.41	8,760	6.20	EPA MRR Table C-2	
N ₂ O (as CO ₂ e)	0.0001	kg/MMBtu	1.69	8,760	7.39	EPA MRR Table C-2	
CO ₂ e			3002.96		13153		

Notes: Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2 CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Unit ID: C202

Unit Descrip: Caterpillar G3612LE

Unit S/N: 1YG00023 Unit Start-up: September, 2007 Unit Mfg Date: October 21, 1991

Reconstructed: 9/2007 Engine Type: 4SLB

Emission Factors (unco	ontrolled)		Source
Site-Rated Horsepower Name Plate Horsepower	3406 3550	bhp bhp	Mfg. data Mfg. data
NO _x :	1.00	g/hp-hr	Mfg. data
co:	2.50	g/hp-hr	Mfg. data
SO ₂ :	5.88E-04	lb/MMBtu	AP-42
voc:	1.09	g/hp-hr	Mfg. data
PM:	9.99E-03	lb/MMBtu	AP-42
HCHO:	0.26	g/hp-hr	Mfg. data

Note: PM Emission Factor includes condensible and filterable; and PM=PM₁₀=PM_{2.5}

VOC Emission Factor includes NMNEHC from maufacturer data plus HCHO from manufacturer and acrolein and acetaldehyde from AP-42, manufacuter data does not include aldehydes

Exhaust Gas Flow (cfm)	24 273
Fuel Use Rate (scf/hr)	23.029
Annual Fuel Consumption (MMscf/yr)	201.7
Fuel Heating Value (Btu/scf, HHV)	1,114
BSFC @ 100% Load (Btu/hp-hr, HHV)	7,535
Heat Input (MMBtu/hr)	25.7
Site Rated Horsepower (bhp)	3,406
Operating Hours	8,780

Source Test Emiss	ion Factors	
NOx (g/hp-hr)	Tested 5/17/2017	0.40
NOx (g/hp-hr)	Tested 11/29/2017	0.71
NOx (g/hp-hr)	2017 Test Maximum	0.71
NOx (g/hp-hr)	Permit Limit	1.00
CO (g/hp-hr)	Tested 5/17/2017	0.01
CO (g/hp-hr)	Tested 11/29/2017	0.01
CO (g/hp-hr)	2017 Test Maximum	0.01
CO (g/hp-hr)	Permit Limit	1.00

				Uncontrolled Emissi	ons				Controlled Emissio	ns		
Pollutant EFS	EF Source	Emi	ssion Factor	Emissions (lb/hr)	Op. Hrs	tpy	Emissio	n Factor	Emissions (lb/hr)	Op. Hrs	tpy	
NO _x	Manufacturer/Source Testing	1.00	g/hp-hr	7.51	8760	32.89	1.00	g/hp-hr	7.51	8760	32.89	-
CO	Manufacturer/Source Testing	2.50	g/hp-hr	18.77	8760	82.22	1.00	g/hp-hr	7.51	8760	32.89	60% control efficier
SO ₂	AP-42, Table 3.2-2	5.88E-04	lb/MMBtu	0.02	8760	0.07	5.88E-04	lb/MMBtu	0.02	8760	0.07	
/oc	Manufacturer	1.09	g/hp-hr	8.16	8760	35.72	0.54	g/hp-hr	4.08	8760	17.86	50% control efficien
PM	AP-42, Table 3.2-2	9.99E-03	lb/MMBtu	0.26	8760	1.12	9.99E-03	lb/MMBtu	0.26	8760	1.12	
нсно	Manufacturer	0.26	g/hp-hr	1.95	8760	8.55	0.05	g/hp-hr	0.38	8760	1.64	81% control efficien
Acetaldehyde	AP-42, Table 3.2-2	8.36E-03	lb/MMBtu	0.21	8760	0.94		lb/MMBtu	0.11	8760	0.47	50% control efficien
Acrolein	AP-42, Table 3.2-2	5.14E-03	lb/MMBtu	0.13	8760	0.58	2.57E-03	lb/MM8tu	0.07	8760	0.29	50% control efficien
Benzene	AP-42, Table 3.2-2	4.40E-04	lb/MMBtu	0.011	8760	0.05	2.20E-04	lb/MMBtu	0.006	8760	0.02	50% control efficien
Ethylbenzene	AP-42, Table 3.2-2	3.97E-05	lb/MMBtu	0.0010	8760	0.004	1.99E-05	lb/MM8tu	0.0005	8760	0.002	50% control efficien
Toluene	AP-42, Table 3.2-2	4.08E-04	lb/MMBtu	0.010	8760	0.05	2.04E-04	lb/MMBtu	0.005	8760	0.02	50% control efficien
Kylene	AP-42, Table 3.2-2	1.84E-04	lb/MMBtu	0.005	8760	0.02	9.20E-05	lb/MMBtu	0.002	8760	0.01	50% control efficien
Methanol	AP-42, Table 3.2-2	2.50E-03	lb/MMBtu	0.06	8760	0.28		lb/MMBtu	0.03	8760	0.14	50% control efficien
n-Hexane	AP-42, Table 3.2-2	1.11E-03	lb/MMBtu	0.03	8760	0.12	5.55E-04	lb/MMBtu	0.01	8760	0.06	50% control efficien
Total HAPs						10.59					2.67	

Notes: Controlled Emissions assumes oxidation catalyst removes 80% HCHO, and 50% VOC & other HAPs; Controlled EFs for NO, & CO from Consent Decree 2:08-CV-00167-TS-PMW;

PM Emission Factor includes condensible and filterable; and PM=PM₁₀=PM_{2.5}

HAP Emission Factors provided by AP-42, Table 3.2-2 (7/2000).

Greenhouse Gas Emissions

Pollutant	Emission F	ector	Emissions (lb/hr)	Op. Hrs	tpy	EF Source
CO ₂	53.02	kg/MMBtu	2999.86	8,760	13139	EPA MRR Table C-1
CH ₄ (as CO ₂ e)	0.001	kg/MMBtu	1.41	8,760	6.20	EPA MRR Table C-2
N ₂ O (as CO ₂ e)	0.0001	kg/MMBtu	1.69	8,760	7.39	EPA MRR Table C-2
CO₂e			3002.96		13,153	

Notes: Emission Factors as per 40 CFR Part 98, Tables C-1 & C-2 CO₂e emissions reported per 40 CFR Part 98, 98.3(b)(4)(i) and Eq. A-1

Wonsits Valley Compressor Station

Emissions Inventory - PTE

Uncontrolled Emissions

Emission Source ID	Emission Source Description	NO _x	со	voc	PM	SO ₂	Total HAPs
Cource ID		tpy	tpy	tpy	tpy	tpy	tpy
C202	Caterpillar G3612LE	32.89	82.22	35.72	1.12	0.07	10.59
C203	Caterpillar G3612LE	32.89	82.22	35.72	1.12	0.07	10.59
C204	Caterpillar G3612LE	32.89	82.22	35.72	1.12	0.07	10.59
C206	Waukesha 12V AT 27GL	38.91	65.85	21.91	1.00	0.06	7.11
C207	Caterpillar G3616LE	43.97	109.94	46.87	1.50	0.09	14.16
D-1	100-MMscfd TEG Dehydration Unit	-	- 4	393.23	-	2	213.43
R-1	1.0-MMBtu/hr Dehydrator Reboiler	0.39	0.33	0.02	0.03	0.002	0.01
T-1	500-bbl Condensate Tank	-	-	13.12	-	-	0.55
T-2 - T-9	Misc Chemical Tanks	-	-	1.12	-	-	0.07
EL	Fugitive Equipment Leaks	-	-	4.79	-	-	0.38
FL-1	Flare Emissions from Dehy Control	0.02	0.02	-		-	12
C-1	Combustor Emissions from Tank Control	0.01	0.005	-	-	-	
C-2	Backup Combustor Emissions from Dehy Control	0.05	0.03	0.00	1.64E-03	1.30E-04	4.07E-04
LO	Truck Load Out			1.57		- ×	Na all
ES	Engine Start-ups	.+	-	0.22			0.01
СВ	Compressor Blowdowns	1.e.		10.05	-	=	0.49
ESD	Emergency Shutdowns	S#:	-	0.067		-	0.003
PG	Pigging Emissions			0.17			0.01
tal		182.03	422.84	600.32	5.90	0.35	268.00

Note: PM Emission Factor includes condensible and filterable; and PM=PM₁₀=PM_{2.5}

Uncontrolled emissions from FL-1 and C-1 only include pilot emissions as tanks and dehdrator are not sent to Flare/Combustor when uncontrolled.

Units shaded in blue are insignificant.

Controlled Emissions

Emission Source ID	Emission Source Description	NO _x	со	voc	PM	SO ₂	Total HAPs
oodice is		tpy	tpy	tpy	tpy	tpy	tpy
C202	Caterpillar G3612LE	32.89	32.89	17.86	1.12	0.07	2.67
C203	Caterpillar G3612LE	32.89	32.89	17.86	1.12	0.07	2.67
C204	Caterpillar G3612LE	32.89	32.89	17.86	1.12	0.07	2.67
C206	Waukesha 12V AT 27GL	38.91	29.93	10.96	1.00	0.06	3.61
C207	Caterpillar G3616LE	43.97	43.97	23.44	1.50	0.09	3.56
D-1	100-MMscfd TEG Dehydration Unit			11.99	200	-	4.61
T-1	500-bbl Condensate Tank	A-		0.66	-	-	0.03
EL	Fugitive Equipment Leaks		-	4.79	-		0.38
FL-1	Flare Emissions from Dehy Control	0.02	0.02				
C-1	Combustor Emissions from Tank Control	0.01	0.00				
C-2	Backup Combustor Emissions from Dehy Control	0.05	0.03	0.00	0.00	0.00	0.00
CB	Compressor Blowdowns	(4)	-	10.05	7 ± 3	0=	0.49
tal		181.63	172.62	115.46	5.87	0.35	20.67

Note: PM Emission Factor includes condensible and filterable; and PM=PM10=PM25.

APPENDIA 8 Emission Calculations

APPENDIX B Emission Calculations

THE REPORT OF THE PROPERTY OF THE PARTY OF T

to all the latest trap and in the second sections are particularly the section of the sections and the section of the section

10 I was a second of the secon

AND DESCRIPTION OF THE PARTY OF

The property of the control of the c

the state of the s

the state of the s

I-COMP 4

D. SCHEDULE FOR SUBMISSION OF COMPLIANCE CERTIFICATIONS

	e by every source. Indicate when you would prefer to ng the term of your permit (at least once per year).
Frequency of submittal Annual	Beginning 1 / 31 / TBD
COMPLIANCE WITH ENHANCED MONIT	TORING & COMPLIANCE CERTIFICATION REQUIREMENTS
	e by every source. To certify compliance with these, you or every applicable requirement related to monitoring and
,	•
Enhanced Monitoring Requirements:	

I-COMP

3

B. SCHEDULE OF COMPLIANCE

Unit(s)	Requirement	SANCON CORP. CO
Reason for Nonco	ompliance. Briefly explain reason for noncompliance at time requirement will not be met on a timely basis:	e of permit issuance or
Narrative Descript achieving complian	tion of how Source Compliance Will be Achieved. Brieflace:	y explain your plan for
Schedule of Comp sequence of action	pliance. Provide a schedule of remedial measures, includir is with milestones, leading to compliance, including a date for	r final compliance.
	Remedial Measure or Action	Date to be Achieved
	the same of the sa	Muse States States
complete this section able requirement reasonable report should st	JBMISSION OF PROGRESS REPORTS on if you are required to submit one or more schedules of co equires submittal of a progress report. If a schedule of comp tart within 6 months of application submittal and subsequent eport may include information on multiple schedules of comp	oliance is required, your ly, no less than every six
complete this section able requirement release report should single. One progress re	on if you are required to submit one or more schedules of co requires submittal of a progress report. If a schedule of comp tart within 6 months of application submittal and subsequent	oliance is required, your ly, no less than every six
complete this sectionable requirement releases report should state. One progress recontents of Progress	on if you are required to submit one or more schedules of co requires submittal of a progress report. If a schedule of comp tart within 6 months of application submittal and subsequent report may include information on multiple schedules of comp	oliance is required, your ly, no less than every six

Emission Unit ID(s): TEG Dehydrator (D-1) and Flare (FL-1)
Applicable Requirement (Description and Citation): 40 CFR Part 63 – Subpart HH per Consent Decree No. 2:08-CV-00167-TS-PMW
§60.5400a; §60.485a [equipment leak GHG and VOC standards applicable to affected facilities at an onshore natural gas processing plant]
Compliance Methods for the Above (Description and Citation): Monitoring, recordkeeping, and reporting: per 40 CFR Part 63, Subparts A and HH. Flare (FL-1) is designed and operated per 40 CFR §63.11 meeting 95% control of VOC, with no more than 140 hours downtime per year.
Compliance Status:
X In Compliance: Will you continue to comply up to permit issuance? _X_YesNo
Not In Compliance: Will you be in compliance at permit issuance?YesNo
Future-Effective Requirement: Do you expect to meet this on a timely basis?YesNo

Federal Operating Permit Program (40 CFR Part 71)
INITIAL COMPLIANCE PLAN AND COMPLIANCE CERTIFICATION (I-COMP)

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Complete this section for each unique combination of applicable requirements and emissions units at the facility. List all compliance methods (monitoring, recordkeeping and reporting) you used to determine compliance with the applicable requirement described above. Indicate your compliance status at this time for this requirement and compliance methods and check "YES" or "NO" to the follow-up question.

Emission Unit ID(s): C202, C203, C204, C206, C207	
Applicable Requirement (Describe and Cite): Subpart JJJJ—Stationary Spark Ignition Internal Combustion Engines	Standards of Performance for
Monitoring, recordkeeping, and reporting: per 40 CFR Part 60, Sul	pparts A and JJJJ.
Table 1; Emissions limits for NOx, CO, and VOC: 1.0, 2.0, and 0.7 540, and 86, respectively, (ppmvd at 15% O_2).	7, respectively (g/hp-hr) and 160,
§60.4243; Conduct annual performance emissions testing for NOx,	CO, and VOC.
Compliance Methods for the Above (Description and Citation): These engines operate under an internally developed maintenance	plan.
Compliance Status:	
X In Compliance: Will you continue to comply up to permit issua	nce? X Yes No
Not In Compliance: Will you be in compliance at permit issuance	ce?YesNo
Future-Effective Requirement: Do you expect to meet this on a	a timely basis?YesNo

Federal Operating Permit Program (40 CFR Part 71) INSIGNIFICANT EMISSIONS (IE)

On this page list each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

Number	Description of Activities or Emissions Units	RAP (except HAP)	HAF
1	R-1, 1.0-MMBtu/hr TEG Reboiler	×	X
1	T-2, 100-bbl New Glycol	х	X
1	T-3, 100-bbl New Lube Oil	X	X
1	T-4, 100-bbl Used Lube Oil	X	X
1	T-5, 100-bbl Used Glycol	Х	Х
1	T-6, 65-bbl Glycol	X	Х
1	T-7, 100-bbl Produced Water (slop tank T-201)	X	X
1	T-8, 100-bbl Dehydrator Drip Tank	X	X
1	T-9, 100-bbl Dehydrator Drip Tank	X	X
1	LO, Truck Loadout (condensate)	X	X
1	PG, Pigging Operations	X	Х
1	ES, Engine Startups	X	X
1	CB, Compressor Blowdowns	×	X
1	ESD, Emergency Shutdowns	×	X

Federal Operating Permit Program (40 CFR Part 71) POTENTIAL TO EMIT (PTE)

For each emissions unit at the facility, list the unit ID and the PTE of each air pollutant listed below and sum the values to determine the total PTE for the facility. It may be helpful to complete form **EMISS** before completing this form. Report each pollutant at each unit to the nearest tenth (0.1) of a ton; values may be reported with greater precision (i.e., more decimal places) if desired. Report facility total PTE for each listed pollutant on this form and in section **J** of form **GIS**. The HAP column is for the PTE of all HAPs for each unit. You may use an attachment to show any pollutants that may be present in major amounts that are not already listed on the form (this is not common).

	Regulated Air Pollutants and Pollutants for which Source is Maj (PTE in tons/yr)						
Emissions Unit ID	NOx	voc	SO2	PM10	со	Lead	HAP
C202	32.9	17.9	0.1	1.1	32.9	n gradu	2.7
C203	32.9	17.9	0.1	1.1	32.9		2.7
C204	32.9	17.9	0.1	1.1	32.9		2.7
C206	38.9	11.0	0.1	1.0	29.9		3.6
C207	44.0	23.4	0.1	1.5	44.0		3.6
D-1		15.3		730			6.1
T-1		3.6		-020			0.2
EL		4.8					0.4
СВ		10.0					0.5
FL-1	0.7				0.2		
C-1	0.4				0.1		
FACILITY TOTALS:	182.7	121.8	0.5	5.8	172.9	0.0	22.5

Note: Fugitive emissions of criteria pollutants do not count toward applicability.

Federal Operating Permit Program (40 CFR Part 71) **EMISSION CALCULATIONS (EMISS)**

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A.	Emissions	Unit ID	C-1	P
----	------------------	---------	-----	---

B. Identification and Quantification of Emissions

			Emission Rate	es	
Air Pollutants		Actual	Potential to Emit		
		Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx		NA **	0.1	0.4	11104-93-1
со		NA **	0	0.1	630-08-0
				6	
	4.0				1
0.0	2.571	HIL.		127	1.54 (1.3) 1.31

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID FL-1	A.	Emissions	Unit ID	FL-1
---------------------------	----	------------------	---------	------

B. Identification and Quantification of Emissions

		Emission Rates				
Air Pollutants	Actual	Potential to Emit				
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.		
NOx	NA **	0.2	0.7	11104-93-1		
со	NA **	0	0.2	630-08-0		

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A.	Emissions	Unit ID	CB
----	-----------	---------	----

B. Identification and Quantification of Emissions

	-			
Air Pollutants	Actual	Potential to Emit		
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
voc	NA **	2.3	10.0	NA
НАР	NA **	0.1	0.5	NA

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A.	Emissions	Unit I	D_	EL
			(- C)	

B. Identification and Quantification of Emissions

		Emission Rates			
Air Pollutants	Actual	Potential to Emit			
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
voc	NA **	1.1	4.8	NA DO	
HAP	NA **	0.1	0.4	NA	
44			T-Asi	The state of the s	
				11 11111	
The second					
F 16.5%			All	arates during the cold for	
				1	

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form GIS. If form FEE does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ______

B. Identification and Quantification of Emissions

Air Pollutants	Actual	Potential to Emit		
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
voc	NA **	0.8	3.6	NA
n-Hexane	NA **	0	0.1	110-54-3
Benzene	NA **	0	0	71-43-2
Toluene	NA **	0	0	108-88-3
Ethylbenzene	NA **	0	0	100-41-4
Xylene	NA **	0	0	1330-20-7
2,2,4 Trimethylpentane	NA **	0	0	540-84-1